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This note is a brief summary of the well-known connection between the logit choice model and

perturbed optimization.

1. Additive random utility models and the logit choice

Consider a decision maker (DM) facing a choice situation. There is a finite set of alternatives, A.

The payoff Va of choosing an alternative a ∈ A is subject to uncertainty, and may be expressed as a

random variable such that

Va = va + ϵa, (1)

where va is known deterministic payoff, and ϵa is a random payoff. It is assumed that ϵa are i.i.d.

across alternatives. It is further assumed that the DM uses randomization, or mixed strategies, so that

they choose each alternative a with the probability pa that a is payoff-maximizing. That is,

pa = Pr[Va ≥ Vb ∀b ∈ A] = Pr[va + ϵa ≥ vb + ϵb ∀b ∈ A]. (2)

This framework is called additive random utility models (ARUM).

If ϵa is i.i.d. with a differentiable c.d.f. F , we have

pa =

∫
F ′(ϵa)

∏
b ̸=a

F (va − vb + ϵa)dϵa. (3)

Further suppose that every ϵa follows the Gumbel distribution with scale parameter η > 0 and no

location parameter, whose c.d.f. is given as

F (ϵ) ≡ exp
(
− exp

(
−η−1ϵ

))
ϵ ∈ (−∞,∞). (4)

It is known that E [ϵ] = η−1γ with Euler’s constant γ ≈ 0.5772, Var [ϵ] = η2π2/6. The constant η

thus represents the magnitude of randomness, and the deterministic payoff v is less (more) relevant for

DM’s choice when η is large (small).

Under the Gumbel assumption, we obtain the logit choice rule:

pa =
exp(η−1va)∑
b∈A exp(η−1vb)

. (5)

The expected value of the maximized payoff, the expected maximum utility (EMU) is

λ ≡ E
[
max
a∈A

Va

]
= η log

∑
a∈A

exp
(
η−1va

)
+ η−1γ. (6)

It is well known that choice probabilities in the logit model satisfy ∂λ
∂va

= pa, that is, choice probability

vector is the gradient of EMU with respect to the deterministic payoffs. This result also extends to all

ARUMs under mild conditions (Williams–Daly–Zachary Theorem) (see Fosgerau et al., 2020).
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Note: Computation of pa and λ

To compute pa under the Gumbel-distributed ϵa, note that, for c.d.f. (4), we have

F ′(ϵ) = ρ(ϵ)F (ϵ) with ρ(ϵ) ≡ η−1 exp
(
−η−1ϵ

)
(= p.d.f.),

F (v + ϵ) = F (ϵ)exp(−η−1v),

{F (ϵ)t}′ = tF (ϵ)t−1F ′(ϵ) = tρ(ϵ)F (ϵ)t.

Then, noting that limϵ→0 F (ϵ) = 0 and limϵ→∞ F (ϵ) = 1, we see

pa =

∫ ∞

−∞
F ′(ϵa)

∏
b ̸=a

F (va − vb + ϵa)dϵa

=

∫ ∞

−∞
ρ(ϵa)F (ϵa)

∏
b ̸=a

F (ϵa)
exp(η−1(vb−va))dϵa

=

∫ ∞

−∞
ρ(ϵa)F (ϵa)

1+
∑

b ̸=a exp(η−1(vb−va))dϵa

=
1

1 +
∑

b ̸=a exp(η
−1(vb − va))

[
F (ϵa)

1+
∑

b ̸=a exp(η−1(vb−va))
]∞
−∞

=
exp(η−1va)∑
b∈A exp(η−1vb)

.

To compute λ, we observe that for V̂ ≡ maxa∈A Va,

Pr[V̂ ≤ x] = Pr[ϵa ≤ x− va ∀a ∈ A] =
∏
a∈A

F (x− va)

= F (x)
∑

a∈A exp(η−1va) = F (x)exp(η
−1λ0) where λ0 ≡ η log

∑
a∈A

exp(η−1va)

= F (x− λ0).

Thus, V̂ follows the Gumbel distribution with location parameter λ0 and scale parameter η, implying

λ = E[V̂ ] = λ0 + η−1γ as in (6).

2. Mixed-strategy best response and linear optimization problem

Next, consider a simple, deterministic approach. Given alternatives a ∈ A and payoffs v = (va),

suppose that the DM’s problem is to determine the payoff-maximizing mixed strategy by solving the

following linear optimization problem:

max
y∈∆

⟨v, y⟩ (7)

where ∆ ≡ {y ≥ 0 |
∑

a∈A ya = 1} is the probability simplex and ⟨x, y⟩ denotes the inner product of

x and y. A solution y∗ for this problem should satisfy

y∗a > 0 ⇒ a ∈ br(v), (8)

where br(v) ≡ argmaxb{vb}b∈A is the set of payoff-maximizing alternatives given the payoff vector v.

Such y∗ form a convex set but uniqueness is not always the case because br(v) may not be a singleton.
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The dual problem for (7) is given as

min
λ

λ s.t. λ ≥ va ∀a ∈ A. (9)

The problem aims to obtain the best (smallest) upper bound for DM’s attainable payoff. Evidently,

the solution and the optimal value for the problem is λ∗ = maxa∈A va and coincides with the optimal

value of (7) (the strong duality of linear optimization).

Note: Derivation of the dual problem

Let λ be the Lagrange multiplier for the constraint
∑

a∈A ya = 1. The Lagrangian function is

L(y, λ) ≡ ⟨v, y⟩ − λ (⟨1, y⟩ − 1) = −⟨λ1− v, y⟩+ λ (10)

with y ≥ 0. The Lagrangian dual problem is to minimize the following objective function, implying (9):

ω(λ) = sup
y≥0

L(y, λ) = sup
y≥0

λ− ⟨λ1− v, y⟩ =

λ if λ ≥ va ∀a ∈ A,

∞ otherwise.
(11)

3. Perturbed optimization

As seen, the deterministic approach does not provide unique prediction regarding DM’s choice. From

the mathematical optimization perspective, this stems from the fact that (7) is a linear optimization

problem. We can consider adding a regularization term to ensure the uniqueness of the predicted

behavior.

Suppose that the DM’s problem in (7) is modified as follows:

max
y∈∆

⟨v, y⟩ −H(y) (12)

The function H : int(∆) → R is assumed to be strictly convex and becomes infinitely steeper as y

goes to the boundary of ∆. Since the objective function is strictly concave and the feasible region ∆

is convex and compact, the modified problem has unique solution.

Below, as a representative case, suppose that H is the negative entropy

H(y) = η
∑
a∈A

ya log ya, (13)

where we define 0 log 0 ≡ 0. As η → 0, the problem (12) recovers the unperturbed problem (7).

The optimal solution y∗ is the logit choice rule:

y∗a = pa =
exp(η−1va)∑
b∈A exp(η−1vb)

. (14)

The optimal value of the problem (12) is

λ(v) ≡ ⟨v, y∗⟩ − η⟨y∗, log y∗⟩ = η log
∑
a∈A

exp(η−1va). (15)

We see that the optimal value can be seen as the expected maximum utility for the logit model. In
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fact,

∂λ(v)

∂va
=

exp(η−1va)∑
b∈A exp(η−1vb)

= pa. (16)

The optimal value function of (12) is nothing but the convex conjugate (Legendre transform) of H,

which also implies the above formula.

The Lagrange dual problem for (12) is

min
λ

λ s.t. λ = η log
∑
a∈A

exp(η−1va) (17)

whose solution, and hence optimal value, coincides with the optimal value of the primal problem (15)

(the strong duality for convex optimization). Observe that λ(v) tends to λ∗ = maxa∈A va as η → 0.

The similarity between the dual problem for the unperturbed case is notable.

Note: Derivations for y∗
a and the Lagrangian dual problem

The Lagrangian function is modified as

L(y, v) ≡ −⟨v, y⟩+ λ (⟨1, y⟩ − 1) +H(y). (18)

The optimality condition is

ya
∂L(y, λ)

∂ya
= 0, ya ≥ 0,

∂L(y, λ)

∂ya
= −va + λ+ η log ya + η ≥ 0, (19)

∂L(y, λ)

∂λ
=

∑
a

ya − 1 = 0. (20)

Since ∂L(y,λ)
∂ya

→ −∞ as ya → 0, ya = 0 violates (19). Then, ya > 0 and ∂L(y,λ)
∂ya

= 0 for all a, implying

ya = exp
(
η−1 (va − λ)− 1

)
. Thus, from

∑
a ya = 1, we obtain

λ = η log
∑
a∈A

exp(η−1va)− η. (21)

Since infy≥0 L(y, λ) = λ+ η, the dual problem is equivalent to (17) where we redefine λ := λ+ η.

Observe that when we take the limit η → 0, ya > 0 can occur only if a ∈ br(v), and ya → 0 as η → 0

if a /∈ br(v), which are consistent with the unperturbed case. To see this, observe

ya =
1∑

b∈A exp(η−1(vb − va))
. (22)

If a /∈ br(v), ya → 0 because the denominator goes to infinity as η → 0 when vb > va for some b. If

a ∈ br(v), ya tends to 1/| br(v)| as η → 0, which is slightly different from the unperturbed case where

mixed-strategy best response can be nonunique.

Considering a different convex function for H induces a different choice rule. All practically used

ARUM have such deterministically perturbed optimization representation but converse is not true.

4. Further readings

• Hofbauer and Sandholm (2002), Theorem 2.1; Hofbauer and Sandholm (2007), Appendix.

• Anderson et al. (1992)
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• 土木学会 (1998), Ch.6

• Fudenberg et al. (2015)

• Fosgerau et al. (2020)
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