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This note is a brief summary of the well-known connection between the logit choice model and

perturbed optimization.

1. Additive random utility models and the logit choice

Consider a decision maker (DM) facing a choice situation. There is a finite set of alternatives, A.
The payoff V, of choosing an alternative a € A is subject to uncertainty, and may be expressed as a

random variable such that

V, = Vg + €4, (1)

where v, is known deterministic payoff, and ¢, is a random payoff. It is assumed that ¢, are i.i.d.
across alternatives. It is further assumed that the DM uses randomization, or mixed strategies, so that

they choose each alternative a with the probability p, that a is payoff-maximizing. That is,
pa = Pr[V, >V, Vb€ Al = Prlv, + €, > vy, + €, Vb € A]. (2)

This framework is called additive random utility models (ARUM).
If €, is i.i.d. with a differentiable c.d.f. F', we have

Pa = /F/(Ga) H F(vg — vp + €4)déq. (3)
b#a
Further suppose that every ¢, follows the Gumbel distribution with scale parameter n > 0 and no

location parameter, whose c.d.f. is given as

F(e) = exp (—exp (—n7'€)) € € (—00,00). (4)

It is known that E[e] = 5~y with Euler’s constant v ~ 0.5772, Var [¢] = n?7?/6. The constant 7
thus represents the magnitude of randomness, and the deterministic payoff v is less (more) relevant for
DM’s choice when 7 is large (small).

Under the Gumbel assumption, we obtain the logit choice rule:

B exp(n~1v,)
P T eaexp(n )’ )

The expected value of the maximized payoff, the expected mazimum utility (EMU) is
— _ -1 -1
A=E [rgleazlc Va} nlog 26;4 exp (n 'va) + 071 (6)

It is well known that choice probabilities in the logit model satisfy E?T); = p,, that is, choice probability
vector is the gradient of EMU with respect to the deterministic payoffs. This result also extends to all
ARUMSs under mild conditions (Williams-Daly-Zachary Theorem) (see Fosgerau et al., 2020).



Note: Computation of p, and A

To compute p, under the Gumbel-distributed €., note that, for c.d.f. (4), we have

F'(€) = p(e)F(e) with p(e) =7 "exp (—n_le) (= p.d.tf),
Flv+e) = F(e)exp(_”ilv),
{F(e)} =tF(e)' " F'(€) = tp(e) F(e)".

Then, noting that lim.o F(¢) = 0 and lime_, o F'(¢) = 1, we see

b#a

Pa = / F'(ea) H F(vg — vp + €4)deq

:/ p(ea)F(ea)HF(ea)exm’l(”b‘”a”dea
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To compute A\, we observe that for V = maxaca Va,
Pr[V < z] = Prle, <z — v, Va € A] = H F(z — va)
a€A
= F(z)>aca exp(n™ va) _ F(ac)e"p(”_lk()) where Ao = nlog Z exp(n”'va)

acA

Thus, V follows the Gumbel distribution with location parameter Ao and scale parameter 7, implying
A=E[V] = Xo+n 'y asin (6).

2. Mixed-strategy best response and linear optimization problem

Next, consider a simple, deterministic approach. Given alternatives a € A and payoffs v = (v,),
suppose that the DM’s problem is to determine the payoff-maximizing mixed strategy by solving the

following linear optimization problem:

max (v, y) (7)

where A = {y > 0| >, .4 va = 1} is the probability simplex and (z,y) denotes the inner product of
x and y. A solution y* for this problem should satisfy

yr > 0= a € br(v), (8)

where br(v) = argmax,{vp}pea is the set of payoff-maximizing alternatives given the payoff vector v.

Such y* form a convex set but uniqueness is not always the case because br(v) may not be a singleton.



The dual problem for (7) is given as
m}%n A st. A>wv, Vace A (9)

The problem aims to obtain the best (smallest) upper bound for DM’s attainable payoff. Evidently,
the solution and the optimal value for the problem is A* = max,c4 v, and coincides with the optimal

value of (7) (the strong duality of linear optimization).

Note: Derivation of the dual problem

Let X be the Lagrange multiplier for the constraint ) ., ¥ = 1. The Lagrangian function is

with y > 0. The Lagrangian dual problem is to minimize the following objective function, implying (9):

w(A) =sup L(y,A) =sup A — (A1 —v,y) =
y=>0 y=>0

A ifA>w. Va€ A,
(11)

oo otherwise.

3. Perturbed optimization

As seen, the deterministic approach does not provide unique prediction regarding DM’s choice. From
the mathematical optimization perspective, this stems from the fact that (7) is a linear optimization
problem. We can consider adding a regularization term to ensure the uniqueness of the predicted
behavior.

Suppose that the DM’s problem in (7) is modified as follows:

ma v,y) — H 12
max  (v,y) — H(y) (12)
The function H : int(A) — R is assumed to be strictly convex and becomes infinitely steeper as y
goes to the boundary of A. Since the objective function is strictly concave and the feasible region A
is convex and compact, the modified problem has unique solution.

Below, as a representative case, suppose that H is the negative entropy

H(y) =1 Yalogya, (13)
acA

where we define 0log0 = 0. As n — 0, the problem (12) recovers the unperturbed problem (7).

The optimal solution y* is the logit choice rule:

exp(n~1vg) (14)

ZbeA exp(n~toy)

y; = Pa =
The optimal value of the problem (12) is

A(v) = (v,y") = n(y*,logy*) = nlog > _ exp(n™'va). (15)
acA

We see that the optimal value can be seen as the expected maximum utility for the logit model. In



fact,

OA(v) exp(n~1v,)
= = Da- 16
Ov, ZbeA exp(n~tup) p (16)

The optimal value function of (12) is nothing but the convex conjugate (Legendre transform) of H,
which also implies the above formula.

The Lagrange dual problem for (12) is

i 4 A=l -t 1
min Aost. A nog%exp(n Vq) (17)

whose solution, and hence optimal value, coincides with the optimal value of the primal problem (15)
(the strong duality for convex optimization). Observe that A\(v) tends to A* = max,ca v, as n — 0.

The similarity between the dual problem for the unperturbed case is notable.

Note: Derivations for y; and the Lagrangian dual problem

The Lagrangian function is modified as
L(y,v) = —(v,y) + A(Ly) — 1) + H(y). (18)

The optimality condition is

L L
LE0A) gy 50, 2H0N) s plogy 4> 0, (19)
0Ya 0Ya
OL(y,\) _ _
= Za:ya 1=0. (20)
Since % — —00 as Yo — 0, yo = 0 violates (19). Then, y, > 0 and % = 0 for all a, implying

Yo = €XP (77_1 (va — A) — 1). Thus, from ) ya = 1, we obtain

A =nlog Z exp(n”'va) — . (21)

acA

Since inf,>o L(y, A\) = A + 7, the dual problem is equivalent to (17) where we redefine A :== \ + 7.

Observe that when we take the limit n — 0, y, > 0 can occur only if a € br(v), and y, — 0asn — 0

if a ¢ br(v), which are consistent with the unperturbed case. To see this, observe

1
T e exp( (v — va))

Ya (22)
If a ¢ br(v), y, — 0 because the denominator goes to infinity as n — 0 when v, > v, for some b. If
a € br(v), y, tends to 1/|br(v)| as n — 0, which is slightly different from the unperturbed case where
mixed-strategy best response can be nonunique.

Considering a different convex function for H induces a different choice rule. All practically used

ARUM have such deterministically perturbed optimization representation but converse is not true.

4. Further readings

e Hofbauer and Sandholm (2002), Theorem 2.1; Hofbauer and Sandholm (2007), Appendix.
e Anderson et al. (1992)



o A2 (1998), Ch.6
e Fudenberg et al. (2015)
e Fosgerau et al. (2020)
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