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1 Introduction

Urban development often exhibits patterns that appear contradictory at first glance. In

Japan, over the five decades from 1970 to 2020, urban populations became increasingly

concentrated in larger cities. The population share of the top 100 cities rose by 19 %,

while that of the remaining cities fell by 17 %, as reflected in the flatter slope of the

rank–size plot (Fig. 1A). Concurrently, however, populations became more spatially

dispersed within individual cities. The average city experienced a 35 % decline in its

maximum population density and a 24 % decline in average density (Fig. 1B), a trend

evident in within-city distributions (e.g., Fig. 1C). Such a dual trend of economy-wide

concentration and intra-urban decentralization is not unique to Japan but is observed

across diverse contexts, including China, France, and the United States.
1

How can population simultaneously concentrate across cities and spread out within

them? Transport costs have been central to theories of economic agglomeration and

dispersion. Indeed, Japan’s spatial reorganization coincided with the rapid expansion

of nationwide high-speed railway and highway networks, which were essentially de-

veloped from scratch between 1970 and 2020.
2

However, interpreting this dual pattern

through existing theory is not straightforward. This is because most analyses rely on

highly stylized few-location settings, , which makes it difficult to analyze how agglom-

eration and dispersion occur in complex spatial economies with many locations.

To address this, the present study develops a unified theoretical framework that

distinguishes between “local” dispersion forces acting within cities and “global” disper-

sion forces acting across them. The core intuition is that dispersion, or the tendency for

economic activity to spread out, operates at two distinct spatial scales: one that pushes

agents toward the fringes of their own city, and another that repels cities away from one

another. This distinction provides a coherent basis for classifying spatial models, clar-

ifying how their comparative statics differ and how transport-induced reorganization

depends on the dominant type of dispersion force in many-location settings.

To understand the core intuition, consider a hypothetical many-location economy

with mobile agents, such as households or firms, making location choices. For expo-

sition purposes, “locations” refer to generic discrete units such as regions, counties,

cities, or grid cells. Suppose that agents benefit from proximity to others through some

agglomeration forces. In the absence of dispersion forces, everyone concentrates in a

1
See Appendix B for more detailed discussion. Combes et al. (2023) report similar evidence for

France using newly constructed panel data spanning 1760–2020.

2
Between 1970 and 2020, the total length increased from 1,119 km to 9,050 km for highways, and

from 515 km to 3,106 km for high-speed railways. This is an increase of more than eight times and six

times, respectively. See Fig. B.1 in Appendix B.
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Figure 1: Global concentration and local dispersion in Japan from 1970 to 2020.

Note: A city is defined as a cluster of contiguous 1km-by-1km grid cells, each with a population density of

at least 1,000/km
2

and collectively comprising at least 10,000 residents. The number of cities decreased

from 504 in 1970 to 431 in 2020. Panel (B) shows the annual cross-city arithmetic means of maximum

and average population densities along with the 95% bootstrap confidence interval. Panel (C) shows the

within-city population distribution in Tokyo in 1970 and 2020. For further discussion, see Appendix B.
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(A) Full agglomeration (B) Monocentric distribution (C) Polycentric distribution

Figure 2: Spatial distributions in a square economy with uniform local fundamentals.

single location, as illustrated by Fig. 2A.

First, consider the negative externalities that arise within a location, depend on

its own population, and affect only its residents. We term such externalities “local”

dispersion forces. A representative example is crowding in the market for non-tradable

goods. For instance, if the housing supply is inelastic, population growth within

a location drives up housing prices, creating incentives for residents to relocate to

nearby, less expensive areas. Agents move incrementally toward the periphery to
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mitigate congestion while still benefiting from proximity to the core. In equilibrium,

this tension gives rise to a single-peaked monocentric spatial pattern, characterized by

a dominant center surrounded by lower-density fringes, as Fig. 2B illustrates.

By contrast, some negative externalities spill across locations. We refer to these as

“global” dispersion forces. A key example is market crowding through interregional

trade in the presence of immobile factors such as land or other natural resources.

Through trade, a large central city can use its agglomeration advantages to dominate

nearby markets, making surrounding locations unattractive for producers. When

transport costs are sufficiently high, producers may instead locate farther from the

center, where competition is weaker and local demand can support entry. The result

is a spatial pattern with multiple agglomerations that compete for market access and

scarce resources and therefore repel each other across space, as Fig. 2C illustrates.

As transport costs decline, local and global dispersion forces exert countervailing

influences. On a global scale, winners and losers can emerge. Improved transport

access extends the spatial reach of firms and consumers, intensifying market crowding

between economic centers. This undermines smaller agglomerations, driving eco-

nomic activities to concentrate further in a limited number of major hubs. However,

on the local scale, lower transport costs reduce the relative advantages of proximity,

fostering spatial spread within cities due to congestion forces. These opposing mech-

anisms can jointly give rise to a dual pattern: economy-wide concentration alongside

decentralization within each agglomeration.

Distinguishing between local and global dispersion forces helps clarify the equi-

librium spatial patterns implied by models of economic agglomeration and the com-

parative statics they generate. A wide range of spatial models can be classified into

three broad types: (i) models with only local dispersion forces, (ii) models with only

global dispersion forces, and (iii) models that incorporate both. These model classes

yield fundamentally different predictions about how declining transport costs shape

the spatial economy. In turn, quantitative spatial models can produce sharply diver-

gent counterfactual outcomes depending on the dispersion forces they embed. For

example, lower transport costs tend to promote spatial spread across locations when

local dispersion forces dominate (e.g., Helpman, 1998; Allen and Arkolakis, 2014), but

promote further agglomeration toward central locations when global dispersion forces

are primary (e.g., Krugman, 1991). In short, whether transport improvements lead to

spatial spreading or further concentration depends on the spatial scale at which disper-

sion forces operate. Consequently, transport policies intended to support peripheral

locations may succeed or backfire depending on whether the models guiding these

policies adequately capture the relevant dispersion forces.
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2 The two-region economy

To introduce key concepts, we consider two-location models throughout this section,

and proceed to many-location settings in later sections.

Preliminaries. There are perfectly mobile agents (e.g., households) who choose their

location to maximize utility. Throughout, locations are called regions for convenience.

Let xi ≥ 0 denote the continuous mass of agents in the region i ∈ {1, 2}, where

x1 + x2 = 1. The indirect utility of agents in the region i is a differentiable function

of the spatial distribution x = (x1, x2) and is indicated by vi(x). A spatial equilibrium
is a spatial distribution x∗

in which no agent is motivated to relocate. For example, if

x∗1 , x∗2 > 0, then x∗
is a spatial equilibrium if and only if v1(x

∗) = v2(x
∗).

Transport between regions is costly, and ϕ ∈ (0, 1) measures the ease of transport
between regions. Higher values of ϕ indicate better access. For later use, we also

introduce the proximity matrix [ϕij] following Matsuyama (2017), where ϕij ∈ (0, 1] is

the ease of transport from region i to j. For the two-region case in this section,[
ϕ11 ϕ12

ϕ21 ϕ22

]
=

[
1 ϕ

ϕ 1

]
. (1)

To focus on forces driven by transport costs and the endogenous spatial distribution

of agents, region-specific characteristics (e.g., innate amenity or productivity) are as-

sumed to be homogeneous. With these common settings in place, we consider a series

of specifications for v(x) = (v1(x), v2(x)), including general equilibrium models such

as Krugman (1991); Helpman (1998); Tabuchi (1998); Redding and Sturm (2008); Allen

and Arkolakis (2014), to illustrate the core ideas.

2.1 The Beckmann model: A “local” dispersion force

We start with the following parsimonious specification:

vi(x) = x−β
i

(
∑

j
ϕijxj

)α
(α, β > 0). (2)

The first term, x−β
i , captures the localized congestion force within each region, while

the second term is positive externalities between regions or the agents’ desire to be

close to each other. We call this the Beckmann model, following Beckmann (1976).
3

3
Beckmann studied spatial agglomeration in a continuous one-dimensional space. To streamline

the exposition, we consider its discrete-space and multiplicative analog.
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Figure 3: Stability of the symmetry in the Beckmann model (α = 1/2, β = 1/6)

The symmetric distribution of agents, x̄ = (1
2 , 1

2), is always a spatial equilibrium.

In fact, if we define the utility difference between the two regions by

∆(x) ≡ v1(x)− v2(x), (3)

we confirm ∆(x̄) = 0.

While x̄ is an equilibrium, with both agglomeration and dispersion forces, x̄ is not

stable if the former dominates the latter. To assess the stability of x̄, we examine the

incentive of movers. Consider a small mass of agents moving from region 2 to 1, so that

x1 rises and x2 falls symmetrically. If ∆ decreases under this perturbation, then ∆ < 0

after the move: utility in region 2 exceeds that in region 1, and the movers will prefer to

return. This induces a restoring force and hence x̄ is locally stable. If ∆ increases, then

∆ > 0 after the move: the movers prefer to stay in region 1, and the deviation attracts

additional movers now that the utility is higher in region 1. Hence, x̄ is unstable.

Figure 3 illustrates the above discussion. The symmetric equilibrium x̄ is stable

in the left panel. In the right panel, x̄ is unstable and two additional stable spatial

equilibria arise, each exhibiting endogenous agglomeration, in which one region becomes

larger despite the perfect symmetry of the regional fundamentals.

We can formalize the above discussion by a simple stability criterion.
4

Lemma 1. Given a differentiable v, define the utility gain for marginal movers by

ω ≡ x̄
v̄
· ∂∆(x)

∂x1

∣∣∣∣
x=x̄

=
x̄
v̄
·
(

∂v1(x)

∂x1
− ∂v2(x)

∂x1

)∣∣∣∣
x=x̄

, (4)

where x̄ ≡ 1
2 and v̄ = v1(x̄) = v2(x̄) > 0. Then, the symmetric equilibrium x̄ is stable

if ω < 0, and unstable if ω > 0. ■

4
All omitted proofs are in Appendix A.
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In Eq. (4), normalization by x̄/v̄ only simplifies the final expression of ω.

In the Beckmann model, we compute

ω = −β + αΘ, where Θ ≡ 1 − ϕ

1 + ϕ
∈ (0, 1). (5)

The negative term −β represents the dispersion force, while the positive term αΘ

represents the agglomeration force. The sign of ω, and hence the stability of x̄, depends

on which force dominates: x̄ is stable if β > αΘ, and unstable if β < αΘ.

In Eq. (5), the dispersion force does not depend on ϕ because it is not affected by

interregional transport conditions. By contrast, the agglomeration force depends on ϕ

as it incorporates interregional interactions. In particular, αΘ decreases as ϕ increases.

That is, the benefit of becoming close to others is small if transport is less costly.
5

Importantly, Θ itself is the proximity gain for marginal movers at each ϕ. To see this,

set α = 1 and β = 0. Then, vi(x) = ∑j ϕijxj corresponds to a parsimonious measure of

proximity. Since ω = Θ in this case, Θ indeed represents the proximity gain.

With Eq. (5), we can determine the stability of x̄ in the Beckmann model. If β ≥ α,

congestion force is so strong that ω < 0 for all ϕ ∈ (0, 1). Agglomeration cannot occur,

as x̄ is always stable. If 0 < β < α, the level of ϕ matters. As Fig. 3 illustrates, x̄ is

stable if ϕ is large (i.e., if the agglomeration force is small), and unstable otherwise.

Gain functions. Beyond the Beckmann model, the utility gain ω in Lemma 1 is well

defined for any differentiable v. In many spatial models, ω is a simple function of Θ,

ω = Ω(Θ), (6)

as in the Beckmann model. For each model, we call this Ω the gain function of the

model. The positive terms of Ω represent the model’s agglomeration forces, whereas

the negative terms represent the dispersion forces. How each term of Ω responds

to changes in Θ then describes how transport conditions alter the strengths of these

forces, and therefore their relative importance at each transport cost level.
6

2.2 The Braid model: A “global” dispersion force

To illustrate what gain functions Ω look like under different specifications of the indirect

utility function v, we employ another reduced-form model. Consider replacing the

5
If instead the regions are in autarky (ϕ = 0), the agglomeration force reduces to local spillovers à la

Henderson (1974). Since Θ = 1 and αΘ = α, the stability condition is whether α < β or not.

6
Generalization is possible for the cases where the proximity gain is multi-dimensional such as

Θ ∈ [0, 1]M where M is the number of different interregional interactions. For clarity, we restrict our

attention to the case M = 1 throughout this study.
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local congestion term in the Beckmann model as follows:

vi(x) = yi(x)
(

∑
j

ϕijxj

)α
. (7)

Here, yi(x) is the income of an agent in the region i. Each region is endowed with

one unit of fixed expenditure, which is allocated to all agents according to accessibility.

Suppose that the share received by an agent in region i from region m is given by
7

si|m(x) ≡
ϕim

∑l xlϕlm
. (8)

Then, yi(x) = ∑m si|m(x). We refer to the model (7) as the Braid model after Braid

(1988) who studied the case α = 0.

In this model, proximity to others has a negative impact on the utility of agents, as

Eq. (8) embeds competition between agents in different regions over spatially dispersed

expenditure. Concretely, for any combination of i, j, m ∈ {1, 2},

∂si|m
∂xj

= − ϕim

∑l xlϕlm
· ϕjm

∑l xlϕlm
= −si|m · sj|m < 0, (9)

demonstrating that a marginal increase in agents in any region j ∈ {1, 2} has negative

impacts on si|m. This is simply because it increases the denominator of si|m. Whether

income yi = ∑j si|j as a whole increases or not after a migration shock depends on the

relative magnitudes of these impacts. Specifically, analogous to the utility gain ω, we

can compute the income gain of a marginal mover from region 2 to 1:
8

x̄
ȳ

(
∂y1(x)

∂x1
− ∂y2(x)

∂x1

)∣∣∣∣
x=x̄

= − 1 + ϕ2

(1 + ϕ)2 +
2ϕ

(1 + ϕ)2 = − (1 − ϕ)2

(1 + ϕ)2 = −Θ2 < 0, (10)

where ȳ = y1(x̄) = y2(x̄) = 1/x̄. This shows that a marginal migration shock always

induces an income loss for the movers. This force is on the second order of Θ, reflecting

that the proximity matrix [ϕij] appears twice in the numerator of Eq. (9).

From Eqs. (4) and (10), the utility gain for the Braid model is given as follows:

ω = αΘ − Θ2. (11)

The gain function for the model is therefore Ω(Θ) = αΘ−Θ2
. The first term is the same

7
Note that the total expenditure of the region m is equal to one: ∑i∈I xisi|m = 1. Possible microfoun-

dations for this toy model are abstracted away for brevity.

8
From Eq. (9),

∂y1
∂x1

= −(s1|1)2 − (s1|2)2 = − 1+ϕ2

x̄2(1+ϕ)2 and
∂y2
∂x1

= −s2|1 · s1|1 − s2|2 · s1|2 = − 2ϕ

x̄2(1+ϕ)2 .
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agglomeration force as in the Beckmann model. The second term, −Θ2
, represents the

“global” dispersion force due to the income loss in Eq. (10).

This dispersion force weakens as Θ falls (i.e., as ϕ increases). If ϕ is very small,

regions are effectively in autarky and yi ≈ si|i ≈ 1/xi. In this case, a migration

shock that raises xi directly intensifies local competition and lowers income, creating a

strong incentive to disperse (−Θ2 ≈ −1). By contrast, if ϕ is close to one, regions face

nearly identical crowding conditions (yi ≈ 1), and migration shocks have little effect

on income (−Θ2 ≈ 0).

In the model, x̄ can become unstable for some ϕ whenever α > 0. If 0 < α < 1, x̄ is

stable for high transport costs (large Θ ⇔ small ϕ) and unstable for low transport costs

(small Θ ⇔ large ϕ). If α ≥ 1, x̄ is unstable for all ϕ.

Contrasting implications of transportation costs. The two reduced-form models

yield fundamentally opposing implications. In the Beckmann model, x̄ is stable for

low transport costs (large ϕ), and agglomeration occurs for high transport costs (small

ϕ). The Braid model exhibits the opposite behavior. Figures 4A and 4B confirm this by

showing the full equilibrium paths on the ϕ-axis. The contrast persists in the presence

of asymmetries. For instance, if region 1 possesses an exogenous advantage as in

Figs. 4C and 4D, a symmetric configuration is no longer an equilibrium. Nevertheless,

the qualitative findings remain consistent with the symmetric case: an increase in

ϕ (declining transport costs) fosters dispersion in the Beckmann model but drives

agglomeration in the Braid model.

This divergence is rooted in the different spatial scales of dispersion forces. In

the Beckmann model, dispersion under high ϕ is driven by the relative weakening of

the agglomeration force, whereas the “local” dispersion force remains invariant to ϕ.

In the Braid model, endogenous agglomeration occurs due to the relative decline of

the “global” dispersion force as ϕ increases. Thus, the spatial scale of the dominant

dispersion force can alter the implications of declining transport costs.
9

As noted in

the introduction and further discussed in Section 3, in many-region settings, these two

types of dispersion forces lead to contrasting spatial patterns.

2.3 Benefit matrix and the spatial scale of economic forces

While the insights from the stylized models considered so far are intuitive and nearly

immediate, they rely on a reduced-form structure. In more comprehensive frame-

9
In fact, the literature on two-region models has recognized that various dispersion mechanisms

can have opposing effects. For example, Fujita and Thisse (2013, Ch.8) compares the seminal models

by Krugman (1991) and Helpman (1998) and noted that “Krugman’s scenario is reversed” (p.289) in

Helpman-type frameworks with urban costs.
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(A) The Beckmann model (Eq. (2))
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(B) The Braid model (Eq. (7))
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(C) The Beckmann model with asymmetry
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(D) The Braid model with asymmetry

Figure 4: Equilibrium values of x1 in the Beckmann model and the Braid model

Note: We set α = 1/2 for both models, and β = 1/6 for the Beckmann model. In Panels (A) and (B),

the black markers indicate the points where the symmetry becomes unstable. In Panels (C) and (D), we

multiply v1(x) by 1.05. The black markers indicate the points at which stable and unstable equilibrium

curves converge. For reference, the equilibria for the symmetric cases are shown in light gray.

works, particularly general equilibrium models where wages, prices, and land rents

are endogenously determined, the impact of transport costs becomes considerably

more complex. In such settings, multiple forces interact simultaneously, making it

difficult to isolate whether “local” or “global” dispersion dominates.

To bridge the gap between our stylized insights and richer general equilibrium

specifications, it is necessary to develop a formal method for evaluating how these en-

dogenous forces respond to changes in transport costs. For this purpose, we introduce

an analytical tool termed the benefit matrix. This matrix allows us to systematically

decompose the spatial externalities inherent in spatial models and classify them into

the local and global forces in our earlier discussion.

Definition 1 (Benefit matrix). For a differentiable indirect utility function v, its benefit
matrix V is its elasticity matrix at symmetric equilibrium V ≡ x̄

v̄ [
∂vi
∂xj

(x̄)]i=1,2;j=1,2.

Then, the utility gain ω in the symmetric equilibrium x̄ is the eigenvalue of the

benefit matrix V, associated with the eigenvector z = (1,−1). Intuitively, z represents

the direction of possible migration shocks because (x̄ + ϵ, x̄ − ϵ) = x̄+ ϵz.
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Example 1. Consider the Beckmann model. Its benefit matrix is

V = −βI + αD, (12)

where I is the identity matrix and D is the row-normalized proximity matrix:

D =
1

1 + ϕ

[
1 ϕ

ϕ 1

]
. (13)

We confirm Dz = 1−ϕ
1+ϕz = Θz. That is, z = (1,−1) is an eigenvector of D, and the

proximity gain Θ is the associated eigenvalue. Then, Vz = (−β + αΘ)z = ωz from

Eq. (12), showing that ω is indeed an eigenvalue of V corresponding to z. ■

Example 2. The benefit matrix for the Braid model is

V = αD − D2., (14)

Since Vz = (αΘ − Θ2)z, ω = αΘ − Θ2
is the eigenvalue of V associated with z. ■

Examples 1 and 2 illustrate that the gain function Ω introduced earlier (Eq. (6))

arises from the structure of V. The utility gain takes the form ω = Ω(Θ) because

the benefit matrix itself can be written in parallel form V = Ω(D). Here, the matrix

function is interpreted in a straightforward way, e.g., matrix polynomials. We can thus

think of V = Ω(D) and ω = Ω(Θ) interchangeably.

In the two reduced-form examples, the gain function Ω(Θ) allows us to formally

distinguish the spatial scale of the economic forces. A negative constant term in

the gain function Ω(Θ) corresponds to a local dispersion force. In contrast, negative

non-constant terms correspond to global dispersion forces. The spatial scale for ag-

glomeration forces can be similarly defined: positive constants are local agglomeration

forces, and negative non-constant terms are global agglomeration forces.

2.4 General equilibrium models

We now examine specific models in the literature to illustrate that their benefit matrices

V are simple functions of D. We can then immediately obtain the associated gain

functions and systematically determine the spatial scale of the dispersion forces in

each model. Detailed derivations are provided in Online Appendix F.

The Helpman (1998) / Redding and Sturm (2008) model. Helpman considered an im-

perfectly competitive framework in which agents consume both differentiated tradable

11



goods and local non-tradable goods (i.e., housing). We consider its variant by Redding

and Sturm. The indirect utility of mobile workers in this model is

vi(x) = x−(1−µ)
i wµ

i · CMA

µ
σ−1
i , (15)

where µ ∈ (0, 1) is consumers’ expenditure share on tradables and 1− µ ∈ (0, 1) is that

on non-tradables, σ > 1 is the elasticity of substitution of horizontally differentiated

tradable varieties, wi is the nominal wage in region i, and CMAi ≡ ∑j∈I xjw1−σ
j ϕji is

the so-called “consumer market access.” The proximity matrix is ϕij = τ1−σ
ij , where

τij ≥ 1 is the iceberg trade cost from region i to j. Given x, the wage w = (wi) is

endogenously determined in general equilibrium with interregional trade.

The benefit matrix for this model can be computed as follows:

V = C(D) · (−(1 − µ)I + c1D) , (16)

where C(D) ≡
(
I + σ−1

σ D
)−1

and c1 ≡ µ
σ−1 +

µ
σ − (1 − µ)σ−1

σ . This then implies

ω = C(Θ) · (−(1 − µ) + c1Θ) (17)

where C(Θ) ≡ (1 + σ−1
σ Θ)−1 > 0. Since C(Θ) > 0, the sign of ω hinges on the sign of

ω♯ ≡ −(1 − µ) + c1Θ, (18)

which is similar to the Beckmann model. In particular, −(1 − µ) corresponds to the

local dispersion force due to crowding in the non-tradables market in each region. If µ

is sufficiently large, then agents’ love for variety produces a strong global agglomeration
force: we have c1 > 0 and hence c1Θ > 0 if µ > (σ−1

σ )2
, where we note

σ−1
σ ∈ (0, 1).

If further µ > σ−1
σ , x̄ is unstable for high transport costs (large Θ) and stable for low

transport costs (small Θ), just as in the Beckmann model.

We provide a slightly detailed derivation behind the final expressions (16) and (17)

for illustration. The definition of v in Eq. (15) yields

V = −(1 − µ)I + µW +
µ

σ − 1
(D − (σ − 1)DW) . (19)

The first term in Eq. (19) represents the crowding in the housing markets. The second

is the direct impact of nominal income on indirect utility, where

W =
1
σ

C(D) · D (20)

12



is the elasticity matrix of nominal wages.
10

The third term in Eq. (19) is the “cost-of-

living” effects: the price index in a region falls when nearby regions offer a greater

variety of goods but increases when they pay higher wages and thus charge higher

prices (see, e.g., Fujita and Thisse, 2013; Baldwin et al., 2003; Brakman et al., 2019).

Substituting Eq. (20) into Eq. (19) and rearranging, we obtain

V = −(1 − µ)I +
µ

σ − 1
D +

µ

σ
(I − D) · C(D) · D and hence (21)

ω = Ω(Θ) = −(1 − µ)︸ ︷︷ ︸
<0

+
µ

σ − 1
Θ︸ ︷︷ ︸

>0

+
µ

σ
C(Θ)(1 − Θ)Θ︸ ︷︷ ︸

>0

. (22)

The first two terms represent the partial equilibrium utility gains where wage adjust-

ments are ignored. The third term in Eq. (22) summarizes the net impact of wages

on indirect utility in general equilibrium, both through the (positive) individual-level

income gain and the (negative) cost-of-living effect. It is a net global agglomeration

force because it is strictly positive for all Θ ∈ (0, 1). Thus, the only dispersion force

that can stabilize x̄ is the local dispersion force captured by the first term of Eq. (22).

Further rearrangement of Eqs. (21) and (22) yields the final expressions (16) and (17).

By construction, ω♯
in Eq. (18) captures the net utility gain considering all endogenous

forces and their general equilibrium trade-offs. For example, despite there is no net
global dispersion force, ω♯ = −(1 − µ) + c1Θ has a negative term involving Θ:

c1Θ =
µ

σ
Θ +

µ

σ − 1
Θ−(1 − µ)

σ − 1
σ

Θ︸ ︷︷ ︸
<0

(23)

This last term represents how the local dispersion force −(1 − µ) counteract, in each

agent’s migration incentives, the core agglomeration forces in the model, such as the

love for variety and demand linkage (the first two terms of Eq. (23)).

The Allen and Arkolakis (2014) model. The model is a perfectly competitive frame-

work with both positive and negative externalities. Appendix F.2.4 shows that the

benefit matrix for the Allen–Arkolakis model is

V = C(D) · (c0I + c1D) , (24)

where C(D) ≡ ((σI + (σ − 1)D)(I − D))−1
, c0 ≡ α − β − 1+α

σ , and c1 ≡ α − β + 1+β
σ .

The parameters α > 0 and β > 0 are the magnitudes of local agglomeration and

10
Concretely, W ≡ x̄

w̄ [
∂wi
∂xj

(x̄)]i=1,2;j=1,2 with w̄ = w1(x̄) = w2(x̄). As C(D) =
(
I + σ−1

σ D
)−1

plays

a role analogous to the Leontief inverse in input–output analysis, W captures the general equilibrium

response of wages to marginal migration shocks taking into account interregional trade.

13



congestion effects with respect to local population, respectively, and σ > 1 is the

elasticity of substitution across regionally differentiated goods. The gain function Ω is

obtained accordingly. Analogous to the Helpman model, the sign of ω depends on a

linear expression ω♯ ≡ c0 + c1Θ that captures the net migration incentive for agents.

If the dispersion force is relatively strong (relatively large β), we have c0 < 0,

indicating a net local dispersion force. Likewise, if the agglomeration force is relatively

strong (relatively large α), we have c1 > 0, indicating a net global agglomeration force.

In particular, if β < α < ᾱ ≡ βσ+1
σ−1 , agglomeration occurs if transport costs are high

(small ϕ) and dispersion occurs if transport costs are low (large ϕ). Under the presence

of externalities, the only stabilizing force in the Allen–Arkolakis model is the local

crowding effect.
11

That is, as discussed in Allen and Arkolakis (2014), this model bears

a structural similarity to the Helpman model.

The Krugman (1991) model. Krugman’s seminal model emphasizes the role of market

crowding. In this model, there is always a nonzero demand for the manufacturing

goods in each region due to the presence of immobile consumers. This discourages

concentration of production in one region if transport costs are high, and this produces

a global dispersion force as in the Braid model. For this model, the benefit matrix is

V = W +
µ

σ − 1
(D − (σ − 1)DW) (25)

where the elasticity matrix for the nominal wage is

W =
1
σ

C(D) ·
(

µD − D2
)

, where C(D) ≡
(

I − µ

σ
D − σ − 1

σ
D2

)−1

. (26)

Compared to Eq. (19), the local dispersion force is absent. Compared with Eqs. (20)

and (26), the Krugman model has a negative term −D2
, while the Helpman model

does not. We can rearrange V to see

V = C(D) ·
(

c1D − c2D2
)

. (27)

where c1 ≡ µ
σ−1 + µ

σ > 0 and c2 ≡ µ2

σ−1 + 1
σ > 0. The gain function is then ω =

C(Θ) · (c1Θ− c2Θ2) with C(Θ) ≡ (1− µ
σ Θ− σ−1

σ Θ2)−1 > 0, where the core trade-off is

captured by ω♯ ≡ c1Θ − c2Θ2
. The first term c1Θ > 0 represents global agglomeration

forces, and the second term −c2Θ2 < 0 captures global dispersion forces augmented

11
In the perfectly competitive case (α = 0 and β = 0), the model reduces to the Armington (1969)

framework. For this case, ω = 1
σ C(Θ)(−1+ Θ) < 0, and the net agglomeration term (−1+ Θ) does not

contain any negative components in Θ. Nonetheless, ω is a negative function and can be interpreted as

the underlying “global dispersion force” inherent to general equilibrium in the Armington framework.

14



by immobile demands. As in the Braid model, dispersion is preferred if transport costs

are high (small ϕ), and agglomeration occurs otherwise (large ϕ).

The Tabuchi (1998) model. Tabuchi integrated urban costs into Krugman’s framework

with immobile consumers. In addition to the regional-scale component of Krugman,

each region has an Alonso–Muth–Mills monocentric city structure. Within each region,

agents commute to a central business district and face the trade-off between commuting

costs and land rent. The benefit matrix for the Tabuchi model reduces to

V = C(D) ·
(
−c0I + c1D − c2D2

)
, (28)

where C(D) is a matrix factor that captures general equilibrium effects, and c0 =

γϵ1 > 0, c1 = µ
σ−1 + µ

σ > 0, and c2 = µ2

σ−1 ϵ2 +
1
σ ϵ3. Here, γ is the share of housing

expenditures, and ϵ1, ϵ2, ϵ3 capture the effects of urban costs. For example, the larger

the commuting cost parameter and/or the opportunity cost of the land, the larger

ϵ1 > 0 becomes, so that the local dispersion force −c0 becomes more pronounced. The

stability of x̄ depends on the quadratic expression ω♯ ≡ −c0 + c1Θ − c2Θ2
.

The agglomeration force (c1Θ > 0) is the same as the Krugman model, while −c0 <

0 captures the local dispersion force due to urban costs. The term c2Θ2
captures net

global forces that include the impacts of urban costs through general equilibrium. The

model features both local and global dispersion forces, and the symmetric equilibrium

can be stable for both high and low levels of transport costs.

Idiosyncratic taste shocks. Idiosyncratic preference shocks (McFadden, 1974, 1978a,b)

are important both in the quantitative and theoretical literature (Hunt and Simmonds,

1993; Waddell, 2002; Anas and Liu, 2007; Redding and Rossi-Hansberg, 2017; Anderson

et al., 1992; Tabuchi and Thisse, 2002; Murata, 2003). Regarding taste shocks, Behrens

and Murata (2021) demonstrated that the spatial equilibrium condition in models

with idiosyncratic shocks can be equivalently represented by that in homogeneous

preference models with local non-tradables markets as in Helpman (1998). Thus, from

the perspective of stabilizing forces at x̄, introducing idiosyncratic shocks into a model

with homogeneous preference is equivalent to adding a negative constant to the utility

gain ω, i.e., to embedding an additional local dispersion force. Welfare implications

are, however, different and care should be taken (Behrens and Murata, 2021).

2.5 The three model classes

As the above examples illustrate, for a wide class of spatial models,

V = C(D) ·
(
c0I + c1D + c2D2), and hence (29)
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1
0 Θ

c0 + c1Θ

−c0

(A) Allen–Arkolakis (Type L)

1
0 Θ

c1Θ + c2Θ2

(B) Krugman (Type G)

1
0 Θ

c0 + c1Θ + c2Θ2

−c0

(C) Tabuchi (Type LG)

Figure 5: Representative forms of the quadratic component of the utility gain

Note: For selected examples from the three model types, the “net” utility gain is plotted as a function

of the proximity gain Θ. Larger Θ corresponds to smaller ϕ. In each panel, x̄ is stable for Θ such that

the curve lies below the horizontal axis. The parameter values are chosen such that the stability of x̄
depends on Θ. Local dispersion forces stabilize x̄ for small Θ, and global dispersion forces for large Θ.

ω = C(Θ) ·
(
c0 + c1Θ + c2Θ2), (30)

where C and the coefficients {c0, c1, c2} are model dependent. In this representation,

the stability of x̄ is governed by the quadratic term, since the sign of ω is entirely

determined by the sign of c0 + c1Θ + c2Θ2
.

For models of this form, we can define three prototypical classes according to

the transport cost conditions under which the symmetric equilibrium is stable: low

transport costs (small Θ or large ϕ), high transport costs (large Θ or small ϕ), or both.

For convenience, we refer to the three model classes as Type L, Type G, and Type LG,

where L and G stand for “local” and “global,” respectively.
12

With {ck} being model-dependent constants, we can summarize as follows:

• Type L emphasizes local dispersion forces as the dominant dispersion mecha-

nism. The symmetric equilibrium is stable if transport costs are low, and unstable

if transport costs are high. V = C(D) · (c0I + c1D) with c0 < 0 indicating the

local dispersion force.

• Type G emphasizes global dispersion forces as the dominant dispersion mecha-

nism. The symmetric equilibrium is stable if transport costs are high, and unstable

if transport costs are low. V = C(D) · (c1D + c2D2), with c2 < 0 representing the

global dispersion force.

• Type LG has both local and global dispersion forces as the dominant dispersion

mechanisms. V = C(D) · (c0I + c1D + c2D2), where c0, c2 < 0 and c1 > 0. The

symmetric equilibrium is stable for both high and low transport cost levels.

12
See Appendix A.3 for formal definitions. Here, we restrict our attention to cases in which the

agglomeration forces are neither too weak nor too strong, so that the symmetric equilibrium is stable

for some values of ϕ and unstable for others.
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Model
Class Stability of x̄ Dominant

dispersion force Examples

Type L
Low

transport costs
Local

Beckmann (1976)

Helpman (1998)

Murata and Thisse (2005)

Redding and Sturm (2008)

Allen and Arkolakis (2014)

Redding and Rossi-Hansberg (2017), Section 3

Type G

High

transport costs
Global

Harris and Wilson (1978)

Krugman (1991)

Krugman and Venables (1995)

Puga (1999), Section 3

Forslid and Ottaviano (2003)

Pflüger (2004)

Type LG

High and low

transport costs

Both

local and global

Tabuchi (1998)

Fujita et al. (1999a), Section 14.4

Puga (1999), Section 4

Pflüger and Südekum (2008)

Pflüger and Tabuchi (2010)

Kucheryavyy et al. (2024)

Table 1: Notable examples

Note: The section numbers in the table correspond to those in the referenced papers. For Krugman and

Venables (1995) and Puga (1999), the spatial distribution of interest is the share of manufacturing sector.

In all the models in the table, the stability of x̄ hinges on the sign of a quadratic function of the form

c0 + c1Θ + c2Θ2
with model-dependent coefficients {c0, c1, c2}.

Figure 5 illustrates the typical shapes of the quadratic term c0 + c1Θ + c2Θ2
in each

class, and Table 1 lists representative examples.

The model-dependent coefficients c0, c1, c2 are functions of the model’s structural

parameters, with transport costs entering only through D. The constant c0 captures

the forces operating within regions and therefore represents the local component. The

coefficients c1 and c2 represent the forces that operate across regions. The first-order

term c1 reflects direct interregional effects, such as agglomeration spillovers in the

Beckmann model. The quadratic term c2 captures higher-order spillovers.
13

Each coefficient ck in the c0, c1, c2 representation captures the composite general

equilibrium effect associated with the corresponding order of D. Its sign therefore

reflects the net contribution to ω in the order of Θ. For example, if there are both

local agglomeration economies and diseconomies, the sign of c0 reveals which force

dominates: c0 > 0 indicates net agglomeration, while c0 < 0 indicates net dispersion.

In the Allen–Arkolakis framework, for example, one obtains c0 = α − β − 1+α
σ , and

13
In many-region settings, c2 reflects indirect interactions mediated by third regions. For example,

in models with interregional trade, agents in the region i are affected by the population of the region j
because agents in the region i compete with those in the region j for income generated in other regions

k = 1, 2, . . .. Such effects typically arise second order in transport frictions, as they depend on the

transport costs between regions i and k, as well as between regions j and k.
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Figure 6: N-region symmetric circle.

α < β is a sufficient condition for the net local effect c0 to be negative.

3 Many regions

This section examines how the proposed taxonomy of spatial models maps to the

endogenous spatial patterns and their comparative statics in an N-region economy. All

variables and functions (e.g., x, v, [ϕij], D) are straightforwardly extended. The set of

regions is now denoted by I ≡ {1, 2, . . . , N}.

We focus on a stylized geography in which homogeneous regions are symmetrically

placed over a circle and transport is possible only along the circumference (Fig. 6).

Assumption C. The proximity matrix is given by ϕij = ϕℓij
, where ϕ ∈ (0, 1) is the ease

of transport between two consecutive regions, and ℓij ≡ min{|i − j|, N − |i − j|} is the

distance between regions i and j over the circumference. All regions are symmetric

regarding their local fundamentals (e.g., innate amenity or productivity). In addition,

N is a multiple of four.
14 ■

This abstracts away the advantages from each region’s unique geographic position:

every region has the same level of geographic accessibility in a circle. Combined

with the perfect symmetry in other regional fundamentals, the symmetric distribution

x̄ ≡ ( 1
N , 1

N , . . . , 1
N ) is always a spatial equilibrium (Lemma 3 in Appendix A.3).

3.1 The stability of the symmetric equilibrium

Endogenous agglomeration occurs when the symmetric equilibrium x̄ is unstable, that

is, when it does not withstand small migration shocks. In an economy with N regions,

such shocks can be represented as

x̄+ ϵz = (x̄ + ϵz1, x̄ + ϵz2, . . . , x̄ + ϵzN) (31)

where ϵ is a sufficiently small scalar. The vector z = (zi)i∈I is a deviation pattern: zi > 0

indicates an inflow into region i and zi < 0 an outflow. Since the total population is

14
This restriction on N is only for expositional simplicity. See Remark 3 in Appendix A.
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fixed, we require ∑i∈I zi = 0. The N-region setting admits a substantially richer set of

deviation patterns than the two-region case, because (x̄ + ϵ, x̄ − ϵ) is the only possible

perturbation in the two-region setting. Below, we normalize ∥z∥ = 1.

Analogous to the two-region case, the expected utility gains for marginal movers

under migration shocks is closely related to the benefit matrix V ≡
[ ∂vi

∂xj
(x̄)

]
i∈I ,j∈I .

Lemma 2. For any deviation pattern z with ∑i∈I zi = 0 and ∥z∥ = 1, the expected

utility gain of marginal movers is ω(z) ≡ z⊤Vz, where ⊤ denotes transpose. ■

Then, the value ω(z) characterizes the stability of x̄. If ω(z) < 0 for all possible

deviation patterns, then any migration shock reduces the utility of the movers and x̄

is locally stable. If ω(z) > 0 for some z, the movers benefit from relocating according

to that pattern, implying instability. Thus, stability is determined by whether the

maximal attainable gain ω∗ ≡ maxz ω(z) is positive or negative.

To characterize ω∗
, let {ωk}denote the eigenvalues of V, and {zk}be their associated

eigenvectors. Because ω(zk) = z⊤k Vzk = ωkz
⊤
k zk = ωk∥zk∥2 = ωk, we observe

ω∗ = max
k

{ωk}, (32)

implying that the largest eigenvalue of V determines the stability of x̄.
15

How can we obtain {ωk}? Under Assumption C, for all models in Table 1, the

benefit matrix satisfies V = Ω(D), where the row-normalized proximity matrix D is

replaced by its N × N counterpart. For each model, the base gain function Ω(Θ) is the

same as in the case of two-regions.
16

Then, V and D share the same set of eigenvectors

{zk}, and V = Ω(D) implies

ωk = Ω(Θk), (33)

where Θk is the eigenvalue of D corresponding to zk. Each Θk is a function of ϕ because

ϕ is the only parameter of D according to our assumptions.

These observations yield a transparent approach to stability analysis, as the follow-

ing example illustrates.

Example 3. In the Beckmann model, we again have V = −βI + αD, where I and D are

15
The discussion here is closely related to Allen et al. (2024). In their framework, the spectral radius

of a matrix that collects key model elasticities governs the uniqueness of the equilibrium. In our setting,

their uniqueness condition [Theorem 1(a)] broadly corresponds to a sufficient condition for the stability

of x̄ for all ϕ, which rules out endogenous agglomeration. Our focus instead lies on environments

with multiple equilibria [cf. their Theorem 1(c)], and we take a step toward understanding how the

underlying network structure shapes the positive properties of these equilibria.

16
This is simply because, for all models we saw in Section 2.4, the gain functions are derived for the

general number of locations under Assumption C, and then specialized to the N = 2 case.
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replaced by the N-region identity and row-normalized proximity matrices.
17

The kth

eigenvalue of V is then ωk = −β + αΘk because Dzk = Θkzk implies Vzk = (−β +

αΘk)zk. The stability of x̄ is determined by the sign of ω∗ = maxk{ωk}. Consider a

value of ϕ such that x̄ is stable, i.e., ωk < 0 for all k and hence ω∗ = maxk{ωk} < 0.

Suppose then that ϕ increases or decreases monotonically. Suppose some ωk∗ changes

its sign from negative to positive at some ϕ∗
. Then, after that point, deviation towards

the zk∗-direction improves the utility of the movers, and x̄ becomes unstable. In this

sense, the corresponding eigenvector zk∗ represents the critical deviation pattern. ■

3.2 Proximity gains and deviation patterns

The eigenvalues {Θk} of D have a clear interpretation analogous to the proximity gain

Θ in the two-region case. Again, for the special case of the Beckmann model with β = 0

and α = 1, the indirect utility function boils down to a simple proximity measure. We

have V = D and ωk = Θk, which can be interpreted as follows.

Observation 1. Each eigenvalue Θk of D measures the proximity gain experienced by

marginal movers when migration shocks occur in the corresponding direction, zk. ■

For example, if N = 4, the normalized proximity matrix under Assumption C is

D =
1

1 + 2ϕ + ϕ2


1 ϕ ϕ2 ϕ
ϕ 1 ϕ ϕ2

ϕ2 ϕ 1 ϕ
ϕ ϕ2 ϕ 1

 . (34)

There are two relevant eigenvalues:

Θ1 =
1 − ϕ

1 + ϕ
and Θ2 =

(
1 − ϕ

1 + ϕ

)2

. (35)

We can check that there are two eigenvectors associated with Θ1, namely z+1 =

(1, 0,−1, 0) and z−1 = (0, 1, 0,−1). Both represent monocentric spatial patterns. For

example, in x̄+ ϵz−1 = (x̄, x̄ + ϵ, x̄, x̄ − ϵ), one region grows at the expense of another

that is two steps away, creating a single center of attraction. For Θ2, the associated

eigenvector is z2 = (1,−1, 1,−1), and represents a polycentric agglomeration pattern

x̄ + ϵz2 = (x̄ + ϵ, x̄ − ϵ, x̄ + ϵ, x̄ − ϵ). Two regions located two steps apart grow

symmetrically, while the two intermediate regions shrink.

There are three intuitive properties about Θ1 and Θ2. First, both are positive. Any

deviation from the full dispersion induces some form of agglomeration, and for movers

17
Observe that Eq. (2) is defined for general N.
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x̄

Regions

xi = x̄ + ϵzk,i

ϵzk,i

(A) k = 1 (B) k = 2 (C) k = 4 (D) k = 8

Figure 7: Examples of spatial patterns generated by zk (N = 16).

this increases the proximity to others. Second, each Θk decreases as ϕ increases. The

proximity gain decreases if transport costs are less important. Third, Θ1 > Θ2 at any

value of ϕ. Naturally, from the perspective of movers, deviation toward a monocentric

pattern induces a greater proximity gain than toward a polycentric pattern.

These properties generalize to the N-region case.
18

All {Θk} are positive and

decrease in ϕ. Each zk corresponds to a deviation pattern with k symmetric peaks as

illustrated in Fig. 7. Most importantly, the maximum and minimum proximity gains

are unambiguously determined: for each ϕ,

max
k

Θk = Θ1 and min
k

Θk = Θ N
2

. (36)

Intuitively, at any value of ϕ, the monocentric agglomeration pattern (k = 1, Fig. 7A)

yields the largest proximity gain for the movers. The proximity gain is the smallest if

the movers agglomerates in every other region (k = N
2 , Fig. 7D).

3.3 Contrasting implications for spatial patterns

The relationship (36) has important implications for endogenous spatial patterns. This

is because the maximum eigenvalue of D is critical if the model incorporates only local

dispersion forces. For instance, since ωk = −β + Θk in the Beckmann model, we see

ω∗ < 0 ⇔ max
k

{−β + αΘk} = −β + α max
k

{Θk} < 0 ⇔ Θ1 <
α

β
. (37)

Figure 8A illustrates this for the N = 8 case, where we draw curves of ωk as a function of

ϕ. The symmetric equilibrium is stable if Θ1 is sufficiently small, i.e., if ϕ is sufficiently

large. If ϕ monotonically decreases from a high level and crosses ϕ∗
, then x̄ becomes

unstable at ϕ∗
because a deviation of the form x̄+ ϵz1 induces a positive utility gain

for the movers. Monocentric agglomeration should form at such a point.

By contrast, if the model has only global dispersion forces, the minimum eigenvalue

18
Akamatsu et al. (2012), Lemma 4.2, provides the analytical formulae for {Θk} and {zk}, while the

interpretation of {Θk} as proximity gains is newly given in the present study. Lemma 5 in Appendix A

reproduces the relevant part of the aforementioned lemma, adapted to our context.
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(A) The Beckmann model (Type L)

ϕ

ω1

ω2

ω3

ω4

ϕ∗

(B) The Braid model (Type G)

Figure 8: Curves of ωk = Ω(Θk) for the two minimal models (N = 8, k = 1, 2, 3, 4).

Note: The symmetric equilibrium is stable if all curves {ωk}4
k=1 stay below the horizontal axis (gray

region). It becomes unstable at ϕ∗
where the largest eigenvalue cuts the axis. In the Beckmann model,

ω1 is the first to cross the axis, whereas in the Braid model, it is ω4.

of D is critical. In the Braid model, ωk = αΘk − Θ2
k = Θk(α − Θk), which implies that

ω∗ < 0 ⇔ max
k

{α − Θk} = α − min
k

{Θk} < 0 ⇔ α < Θ N
2

. (38)

Figure 8B illustrates this for the N = 8 case. The symmetric equilibrium is stable if Θ N
2

is sufficiently large, that is, if ϕ is sufficiently small. If ϕ gradually increases from a very

small value, at ϕ∗
, the

N
2 -centric deviation pattern zN

2
becomes attractive for movers.

The two minimal examples show that the spatial pattern emerging at the onset

of instability is critically dependent on the spatial scale of the dispersion force in the

model. In particular, polycentric patterns arise only when the dispersion force operates

at a global scale. This insight from the reduced-form models can be extended to cover

general equilibrium models discussed in Section 2.4:

Proposition 1. Suppose Assumption C.

(a) Consider a model of Type L or LG with local dispersion forces. Then, the sym-

metric equilibrium x̄ is stable for large ϕ. Suppose that the model parameters are

set so that x̄ is stable for all ϕ > ϕ∗
with some threshold value ϕ∗ ∈ (0, 1), and

becomes unstable at ϕ∗
, i.e., x̄ is unstable for ϕ slightly smaller than ϕ∗

. Then, a

single-peaked monocentric spatial equilibrium path branches from x̄ at ϕ∗
.

(b) Consider a model of Type G or LG with global dispersion forces. Then, x̄ can be

stable for small ϕ. Suppose that the model parameters are set so that x̄ is stable

for all ϕ < ϕ∗
with some threshold value ϕ∗ ∈ (0, 1), and becomes unstable at

ϕ∗
, i.e., x̄ is unstable for ϕ slightly larger than ϕ∗

. Then, a polycentric spatial

equilibrium path with
N
2 symmetric peaks branches from x̄ at ϕ∗

.

Proposition 1 considers settings in which multiple equilibria may arise, while x̄

remains stable for some values of ϕ. This condition need not always hold. For exam-
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ple, in a Type L model with sufficiently strong local dispersion forces, x̄ is stable for

all ϕ ∈ (0, 1), and the threshold ϕ∗
in Proposition 1 (b) does not exist. In such cases,

the equilibrium is typically unique, a convenient feature that makes unambiguous

counterfactual analysis feasible in quantitative spatial models. Equilibrium unique-

ness implies that, absent exogenous geographical asymmetries, x̄ is the only possible

outcome. At the opposite extreme, in Type G models with sufficiently strong agglom-

eration forces, x̄ can be unstable for all ϕ, leading all agents to concentrate in a single

location. Proposition 1 deliberately excludes both of these extremal cases.

3.4 Evolution of spatial patterns

Because Proposition 1 relies on a local stability analysis around x̄, it does not establish

whether an instability toward polycentric deviations actually leads to stable polycentric

equilibria. To trace how stable spatial equilibria evolve as transport costs change

beyond Proposition 1, one must specify an indirect utility function, and the resulting

characterizations are therefore model dependent.
19

Nonetheless, in specific models, we can show that polycentric spatial patterns

become stable only when global dispersion forces are sufficiently strong, consistent

with Proposition 1. This is illustrated by the following formal results and Fig. 9.

Proposition 2. Consider the Type L model of Helpman (1998) on a symmetric four-

region circle. Suppose that the full dispersion x̄ = (1
4 , 1

4 , 1
4 , 1

4) is stable for large ϕ, but

that multiple equilibria may exist. Then there exists a threshold ϕ∗ ∈ (0, 1) such that

x̄ is unstable for all ϕ ∈ (0, ϕ∗). For this range, any duocentric equilibrium of the form

(m1, m2, m1, m2) with m1 > m2, if it exists, is also unstable, implying that all stable

equilibria must be single-peaked. For ϕ ∈ (ϕ∗, 1), the fully dispersed allocation x̄ is

stable, and a single-peaked equilibrium path connects to x̄ at ϕ∗
[cf. Proposition 1 (a)].

Proposition 3. Consider the Type G model by Forslid and Ottaviano (2003) on a four-

region symmetric circle. Assume that the full dispersion x̄ = (1
4 , 1

4 , 1
4 , 1

4) is stable for

small ϕ. Suppose that the initial state is x̄, and ϕ increases monotonically from 0. At

some threshold ϕ∗
, x̄ becomes unstable, and duocentric spatial equilibrium of the form

(m1, m2, m1, m2) with m1 > m2 branches from x̄ [cf. Proposition 1 (b)]. In particular,

the new stable equilibrium is the duocentric agglomeration such as (1
2 , 0, 1

2 , 0). At some

ϕ∗∗ > ϕ∗
, the duocentric equilibrium becomes unstable. Finally, the full agglomeration

in a single region such as (1, 0, 0, 0) becomes the stable spatial equilibrium for large ϕ.

19
For example, Kucheryavyy et al. (2024) focused on a specific but flexible two-region model that

encompasses Allen and Arkolakis (2014) and Krugman (1991) as special cases. They essentially showed

that the agricultural sector à la Krugman (1991) produces a global dispersion force that stabilizes the

symmetric equilibrium at high transport costs, which is consistent with our results.
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(B) The Forslid–Ottaviano model (Type G)

Figure 9: Numerical illustration of Propositions 2 and 3.

Proof of Propositions 2 and 3. See Akamatsu et al. (2016).

In Fig. 9, the schematic diagrams above show the corresponding spatial patterns.

In particular, in the Helpman model, a monocentric distribution of the form x =

(m2, m1, m2, m3) with m1 > m2 > m3 is the stable equilibrium for ϕ ∈ (0, ϕ∗). It

converges to the full dispersion at ϕ∗
, which is consistent with Proposition 1 (a).

As a further numerical example, Figure 10 shows the typical evolution of spatial

patterns, assuming N = 16. We consider a monotonic increase in ϕ (i.e., a monotonic

decrease in transport costs), and follow a path of stable spatial equilibria.

Figure 10A considers the Type L model by Helpman (1998). The symmetric equilib-

rium x̄ is unstable if ϕ is small and the agents concentrate around a single peak. As ϕ

increases, the monotonic spread of the single-peaked distribution occurs. At a critical

level of ϕ, the spatial distribution converges to x̄ [Proposition 1 (a)]. In particular, stable

equilibria are single-peaked throughout the process.

Figure 10B considers the Type G model of Krugman (1991). When ϕ is low, the

symmetric equilibrium is stable. As ϕ increases, an endogenous transition occurs,

and a polycentric equilibrium with eight agglomerations becomes stable [cf. Propo-

sition 1 (b)]. Further increase in ϕ triggers successive instabilities: the number of

agglomerations falls, the spacing between them widens, and each remaining center

grows larger (cf. Proposition 3). As a result, the number of centers in the stable equilib-

rium evolves as 16 → 8 → 4 → 2 → 1. In Type G models, spatial adjustment generates

both winners and losers. Centers that initially grow may later decline as larger ag-

glomerations expand at their expense. For instance, in Fig. 10B, the fifth region from

the left initially gains population as ϕ increases but eventually loses population.
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Figure 10: Stable spatial patterns at different transport cost levels.

Note: The spatial distributions in the circular economy are visualized as if it is on a line segment. In

each figure, the leftmost region is neighboring to the rightmost one under Assumption C.

Figure 10C considers a many-region version of the Type LG model by Pflüger and

Südekum (2008). The symmetric equilibrium is stable if ϕ is small. As ϕ increases,

eight-centric agglomerations emerge at some point, as in Type G. Multiple bell-shaped

agglomerations are generated at moderate ϕ. Increasing ϕ further causes a decrease

in the number of agglomerations and the spread of each agglomeration. When ϕ is

close to one, the economy becomes monocentric, as in Type L. Notably, in the large

ϕ regime, the model exhibits a transformation from a two-peaked to a single-peaked

pattern accompanied by local spreading. This broadly resembles the dual evolution of

cities discussed in Section 1.
20

4 Asymmetries

Real-world geography differs markedly from the stylized benchmarks discussed so far.

Geographic accessibility and other region-fixed attributes can vary between locations,

generating distortions absent in idealized settings. Yet, as a brief exploration in this

section demonstrates, these exogenous asymmetries do not alter the core insights: the

spatial scale of dominant dispersion mechanisms can fundamentally shape the spatial

distribution and their response to transport costs.

20
While the real-world dynamics appear to unfold simultaneously, the model generates these changes

somewhat sequentially: first through a reduction in the number of peaks, and then through the flattening

of the remaining agglomeration. This discrepancy may reflect limitations of the model, the most

fundamental issues being the absence of inter-location commuting and dynamic decisions.

25



?

H
i
g
h

t
r
a
n

s
p

o
r
t

c
o
s
t
s

L
o
w

t
r
a
n

s
p

o
r
t

c
o
s
t
s

(A) The Allen–Arkolakis model (Type L) (B) The Krugman model (Type G)

Figure 11: Stable spatial patterns in a square economy (92 = 81 locations).

4.1 Geographic accessibility

Asymmetries can arise solely from the underlying distance structure between regions.

To illustrate this point, Figure 11 considers a square geography with homogeneous

local fundamentals and compares stable equilibria under the Type L and Type G mod-

els. Unlike in a circular economy, some regions are “central” and therefore enjoy an

inherent accessibility advantage. Nonetheless, our theoretical result continues to hold:

the spatial distribution is monocentric under Type L, whereas it is polycentric under

Type G. Moreover, comparative statics with respect to reductions in transport costs are

qualitatively similar to those in Figs. 10A and 10B: under Type L, population spreads

monotonically, while under Type G, agglomeration proceeds through successive con-

centration into fewer locations. See Appendix D for further examples. To obtain

formal results for such asymmetric settings, one approach is to select tractable models

representative of each type and study their implications across alternative network

structures, following the strategy of Matsuyama (2017) in a trade context.
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4.2 Local fundamentals

Other than innate accessibility advantages, region-specific parameters such as exoge-

nous productivity and amenity levels are equally fundamental, especially in quantita-

tive spatial models (QSMs). For example, in the model of Allen and Arkolakis (2014),

indirect utility can be written as

vi(x) = uix
−β
i︸ ︷︷ ︸

Congestion in amenities

(local dispersion force)

·
(

∑
k∈I

w1−σ
k (bkxα

k )
σ−1 ϕki

)1/(σ−1)
wi, (39)

where {wi} are the nominal wages determined in the market equilibrium given x:

wixi = ∑
j∈I

w1−σ
i

(Within-region productivity spillover (local agglomeration force)︷︸︸︷
bixα

i
)σ−1

ϕij

∑k∈I w1−σ
k

(
bkxα

k

)σ−1
ϕkj

wjxj ∀i ∈ I , (40)

The key elasticities are α > 0, β > 0, and σ > 1. The equilibrium is unique if α − β < 0.

In this case, given the observed population vector x̂, we can uniquely solve for the

region-specific parameters ui and bi that rationalize x̂ as the model’s equilibrium. A

natural question then is how such regional differences affect our results.

To address this question, the circular economy remains useful. Consider the prox-

imity structure as in Assumption C, but allow for variations in region-specific ameni-

ties, which we denote by a = (ai)i∈I with ai > 0. When ai = ā for all i, we recover

the symmetric racetrack economy of Section 3, for which x̄ is an equilibrium. If we

slightly perturb a from ā ≡ (ā, ā, . . . , ā), then x̄ is also slightly perturbed to form a new

equilibrium x(a), which can be seen as a function of a.

To summarize the overall effect of such heterogeneities in a on the spatial distri-

bution, we can use the covariance between each region’s relative advantage and its

deviation in population share from x̄:

ρ ≡ ∑
i∈I

Exogenous regional (dis)advantage︷ ︸︸ ︷
(ai − ā) (xi(a)− x̄)︸ ︷︷ ︸

Endogenous deviation from x̄

. (41)

If ρ = 0, heterogeneity in a does not affect the spatial distribution. We assume ρ > 0

without loss of generality, as more advantaged regions should attract more population.

Since the mappingx(a) is model dependent, the magnitude of ρ at a given transport

cost level captures how the model’s endogenous forces translate variation in a into

variation in regional population distribution. Appendix E formally shows that the
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(A) Observed (from 2020 to 1970)

(B) Removal of highways (Type L) (C) Removal of highways (Type LG)

Figure 12: Observed and counterfactual population change rates of Japanese regions.

Note: Figures are based on the simulation data of Sugimoto et al. (2025). Panel (B) reports a many-region

version of the Type L model of Helpman (1998). Panel (C) reports the Type LG model of Sugimoto

et al. (2025), which extends the Helpman framework by incorporating land and intermediate goods as

additional inputs. Although Sugimoto et al. does not assume immobile workers, land as an immobile

factor generates a global dispersion force, as in Pflüger and Tabuchi (2010).

sensitivity of ρ to transport costs differs markedly between models, depending on the

spatial scale of the dispersion forces (Propositions 4 and 5).

Specifically, in models with pronounced global dispersion forces, improved inter-

regional access tends to magnify initial local advantages: ρ increases as the freeness of

transport ϕ increases and the population becomes more concentrated in the regions

favored due to exogenous advantages. By contrast, in models with strong local dis-
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(A) Calibration to the population in 2020 (B) Counterfactual growths

Figure 13: Comparison of model behaviors in Fig. 12

Note: Panel (A): In both models, beyond 90% of log population variation is explained by exogenous

region-fixed fundamentals (a composite of observed land area and unobserved amenities). Panel (B): In

the Helpman model (Type L), growth rates and exogenous fundamentals are positively associated, i.e.,

highway removal induces growths at high-amenity regions, which are, as Panel (A) shows, essentially

more populated regions in 2020. The converse holds true for Sugimoto et al.’s Type LG model as we

observe negative association between exogenous fundamentals and growth rates.

persion forces, the same transport improvement tends to dampen the role of innate

heterogeneity, resulting in a flatter distribution, and ρ decreases as ϕ increases. These

patterns are consistent with the two-region examples in Figs. 4C and 4D.

4.3 The combination: A quantitative example

In reality, both geographic accessibility and local fundamentals vary between regions.

We briefly discuss Sugimoto et al. (2025)’s results that compare Type L and Type LG over

the Japanese geography. Figure 12 reports the observed and counterfactual population

growth rates. Panel (A) shows actual changes from 2020 to 1970 (i.e., backward in time),

highlighting the shift to major centers such as Tokyo, Osaka, and Nagoya. Panels (B)

and (C) present counterfactual simulations based on calibrated Type L and Type LG

models, respectively. Each model is calibrated to the population distribution observed

in 2020 under the assumption of a unique equilibrium and then used to evaluate the

counterfactual effects of removing the highway network.

There is a notable contrast between the two models. In the Type L model, the

removal of highways leads to further concentration in the core regions (Fig. 12B). This

aligns with the theoretical property of Type L models that higher transport costs induce

greater centralization. Figure 12C shows the opposite pattern: in the Type LG model,

the same shock produces a substantial population shift toward peripheral regions.
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Figure 13B uses the same simulation data as Figs. 12B and 12C to show that, as

transport costs rise, more advantaged regions grow faster in Type L, whereas the

opposite occurs in Type LG. This pattern is consistent with the discussion in Section 4.2.

These qualitative reversals illustrate that the embedded forces can fundamentally shape

the counterfactual implications of spatial models in asymmetric geographies.

4.4 On quantitative spatial models

These results call for research on the role of endogenous economic forces in QSMs. A

central premise of the QSM literature is that it “does not aim to provide a fundamental

explanation for the agglomeration of economic activity, but rather to provide an empir-

ically relevant quantitative model to perform general equilibrium counterfactual policy

exercises” (Redding and Rossi-Hansberg, 2017, p. 23). Building on this premise, QSMs

typically impose equilibrium uniqueness and interpret unexplained interregional vari-

ation (i.e., structural residuals) as innate regional fundamentals. As a result, much of

the observed variation is attributed to structural residuals (cf. Fig. 13A), and endoge-

nous forces play a more limited role than in stylized theories of agglomeration.
21

However, as the Japan example in Section 4.3 illustrates, seemingly innocuous

choices regarding endogenous forces in QSMs can lead to markedly different coun-

terfactual predictions, especially for distributional outcomes across regions. Most

regional QSMs are Type L and rely on local dispersion forces for tractability (Redding,

2025, Fn. 8), which leads them to predict decentralization as transport costs fall.
22

This

narrows the range of distributional outcomes such models can generate and, in turn,

constrains the policy conclusions that can be drawn.

Further, some empirical contexts may be at odds with the unique-equilibrium as-

sumption. For large transport projects such as highway systems, winners and losers

may be uncertain ex-ante, making multiple equilibria potentially relevant. Evidence

from the Chinese urban system indicates that urban hierarchies can be based on strong

agglomeration forces or immobile factors (Baum-Snow et al., 2020), both of which can

generate multiple equilibria. The persistence of spatial patterns further indicates that

strong agglomeration forces and path dependence shape long-run regional outcomes

(Lin and Rauch, 2022). A central challenge is therefore to assess whether incorporating

such forces improves the empirical fit and counterfactual performance of QSMs. Re-

latedly, Graham and Hörcher (2024) argue that while QSMs hold promise for applied

21
For example, in the seminal works of Redding and Sturm (2008) and Allen and Arkolakis (2014),

structural residuals account for 90% and 78% of the logarithmic variation of the city size.

22
A subtle point is that the local–global distinction reflects detailed modeling choices rather than

broad economic mechanisms. For example, a “congestion” force can be global if it arises from crowding

of facilities that are accessible across regions with positive transport costs.
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transport policy analysis, they are not yet practice-ready, citing model validation and

uncertainty quantification as key obstacles. These challenges are closely tied to how

endogenous forces are specified in QSMs, since the strength and nature of agglom-

eration and dispersion mechanisms critically determine equilibrium spatial structure

and, ultimately, the robustness of counterfactual predictions.

5 Concluding remarks

We briefly discuss several examples to illustrate that our theoretical framework also

offers a unifying interpretation of seemingly heterogeneous empirical findings. See

Duranton and Turner (2025) for a more comprehensive survey of empirical evidence

on how transport infrastructure affects urban and regional growth.

Evidence on regional growth from Faber (2014) is consistent with the predictions of

Type G or GL models. He examines peripheral cities in China and finds negative effects

on economic output. This may reflect a tendency for economic activity to concentrate

in relatively larger or more central regions as transport access improves.
23

Baum-Snow

et al. (2020) provide complementary evidence for China, documenting slower growth

in the hinterland prefectures compared to regional primates following the expansion

of the highway system.

In the intra-urban context, Baum-Snow (2007) and Baum-Snow et al. (2017) provide

evidence for the US metropolitan areas from 1950 to 1990 and for Chinese prefectures

from 1990 to 2010. Both studies examine how the share of population or production

in the central area within a larger region changes as the transportation infrastructure

expands, and both report negative effects in the central area. This is consistent with the

behavior of Type L or LG models after transport investments. Such local spread can also

be viewed as suburbanization driven by improved intra-urban transport infrastructure

or by the diffusion of motorized transportation in the Alonso–Muth–Mills framework.
24

As seen above, a unified theoretical framework can help synthesize and interpret

empirical findings. Since this study focuses on static models with a single agent type,

further scrutinies are essential for providing a bird’s-eye view of both the empirical

evidence and the now vast quantitative spatial economics literature. We conclude by

outlining two directions that merit further theoretical investigation.

First, it is important to consider multiple types of mobile agents that differ in their

23
Duranton and Turner (2012) document that transport infrastructure in neighboring MSAs negatively

affects the employment growth rate of an MSA (Table E2), a pattern consistent with global agglomeration.

24
The structural transformation away from agriculture frees land around cities and also contributes

to the decline of urban density (Coeurdacier et al., 2024). This can also be interpreted through the AMM

framework as a reduction in the opportunity cost of land.
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proximity matrices and/or the degree of increasing returns they experience. Such

heterogeneity is ubiquitous in multi-sector models (Fujita et al., 1999b; Hsu, 2012;

Gaubert, 2018; Davis and Dingel, 2020) and in intracity models with multiple types of

agents (e.g., Fujita and Ogawa, 1982; Lucas and Rossi-Hansberg, 2002; Ahlfeldt et al.,

2015; Heblich et al., 2020). For example, Duranton et al. (2014) studied the impact of new

highway connections on intercity trade in the US and showed that heavier industries

are more sensitive to improved access. Allen et al. (2024) considered a quite general

spatial model with multiple spatial interactions, but the characterization of endogenous

equilibrium spatial structure has yet to be done, in particular for the cases with multiple

equilibria. Circular geography provides a tractable starting point for analysis of many-

locations under such structures (Tabuchi and Thisse, 2011; Osawa and Akamatsu, 2020).

As Hsu (2012) suggests, the incorporation of sectoral heterogeneity can be particularly

important for understanding the mechanisms behind the remarkable regularities in

the size and spatial variation of cities (Mori et al., 2020).

Second, models with a continuum of agents as considered in this study are com-

plementary to “granular” spatial models (e.g., Ahlfeldt et al., 2022), in which endoge-

nous agglomeration arises from increasing returns and the indivisibility of agents.

Continuum-agent models can replicate systematic spatial regularities, such as periodic

agglomeration patterns and city-size distributions that include their fractal structure

(e.g., Hsu, 2012; Tabuchi and Thisse, 2011; Mori et al., 2023). Granular spatial models

are better suited to capture idiosyncratic location choices by superstar firms and large

plants (e.g., Greenstone et al., 2010). Combining these two approaches may yield a

deeper understanding of the spatial patterns of economic activities as the result of

endogenous forces.
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A Proofs

A.1 Proof of Lemma 1

First, we can represent ∆ in terms of marginal migration from region 2 to 1: ∆(ϵ) :=

∆(x̄+ ϵ
2(1,−1)) = v1(x̄ + ϵ

2 , x̄ − ϵ
2)− v2(x̄ + ϵ

2 , x̄ − ϵ
2). Then, ω = x̄

v̄ ∆′(ϵ)|ϵ=0, meaning

that ω is proportional to the directional derivative of ∆ with respect to the unit migra-

tion from region 2 to 1, as
1
2(1,−1) is a normalized vector. Here, we used the fact that

∂v1
∂x1

(x̄) = ∂v2
∂x2

(x̄) and
∂v1
∂x2

(x̄) = ∂v2
∂x1

(x̄) due to the symmetry of the regions at x̄. The

stability condition based on the sign of ω is valid for general v provided that v̄ > 0.

A.2 Proof of Lemma 2

Let δvi(z) ≡ vi(x̄+ z)− vi(x̄) be the utility difference in each region under deviation

z. The utility gain for a mover from region j to i is

x̄
v̄
(
δvi(z)− δvj(z)

)
. (A.1)

By adding up the utility gains for all the migrants in the economy, the aggregate

utility gain for migrants is measured by ω(z) = x̄
v̄ ∑i∈I δvi(z)zi = x̄

v̄ δv(z)⊤z, as

there are zi agents migrated to region i (if zi > 0) or from region i (if zi < 0), each

experiencing utility difference δvi(z) at both their origin and destination. The first-

order approximation shows δv(z) ≈ v(x̄) +∇v(x̄)z − v(x̄) = ∇v(x̄)z and hence

gives ω(z) = z⊤Vz.

It is noted that ω(z) must be considered subject to z ∈ T, where T ≡ {z ∈ RN |
∑i∈I zi = 0} is the set of all feasible deviations that preserves the total population. To

avoid technicality, the main text do not mention the constraint zk ∈ T. This constraint

excludes deviations of the form z = (ϵ, ϵ, . . . , ϵ), which represents the symmetric

increase or decrease of population across all regions.

A.3 Proof of Proposition 1

We consider spatial models described by a payoff function (i.e., indirect utility) v(x) ≡
(vi(x))i∈I , parametrized by a proximity matrix [ϕij], along with Assumption C. Let D

be the row-normalized proximity matrix, whose (i, j)th element is

ϕij
∑k∈I ϕik

. Throughout,

we assume that v is differentiable if xi > 0 for all i ∈ I . The precise version of the

symmetry of exogenous local fundamentals in Assumption C is the following:
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Assumption S. For allx, payoff function v satisfies v(Px) = Pv(x) for all permutation

matrices P that satisfy PD = DP. ■

Example 4. Suppose N = 4. If we consider regions 1 and 3, swapping their indices

corresponds to applying the following permutation matrix to the spatial distribution

and the payoff function:

P =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 . (A.2)

This matrix simply switches the values of x1 and x3 in any vector (x1, x2, x3, x4). That

is, Px = (x3, x2, x1, x4). This corresponds to relabeling the regions while keeping their

physical positions fixed. The condition PD = DP ensures that the relabeling preserves

the spatial relationships encoded in D. If v does not include any region-specific

heterogeneities, then the transformed utility vector must satisfy v(Px) = Pv(x). This

property is called equivariance; it ensures that utility differences are determined entirely

by the spatial distribution, not by arbitrary index labels. Equivariance allows us to

employ the machineries from group-theoretic bifurcation theory (see, e.g., Golubitsky

and Stewart, 2003; Golubitsky et al., 2012; Ikeda and Murota, 2014). ■

Under Assumption C, we can use the full dispersion as the initial state.

Lemma 3. Under Assumption C (including Assumption S), the uniform distribution

of agents, x̄ = (x̄, x̄, . . . , x̄) with x̄ ≡ 1/N, is a spatial equilibrium. ■

Proof. For any permutation matrix P, x̄ = Px̄. Then, v(Px̄) = Pv(x̄) reduces to

v(x̄) = Pv(x̄) for all permutation matrix P that satisfies PD = DP. This implies that

vi(x̄) = vj(x̄) for any i, j ∈ I . That is, x̄ is a spatial equilibrium.

We focus on a class of models that include all models discussed in the main text.

As in the main text, let V = x̄
v̄∇v(x̄) be the benefit matrix for a given payoff function.

Definition 2. A canonical model is a model associated with a rational function Ω that is

continuous over [0, 1] such that V = Ω (D). We call Ω the gain function of the model.

In Definition 2, a rational function Ω is a function of form Ω(·) = Ω♯(·)/Ω♭(·) with

polynomials Ω♯(·) and Ω♭(·) ̸= 0, where our convention is that Ω♭(·) > 0. Given such

Ω, we let Ω(D) = Ω♭(D)−1Ω♯(D), where, for a polynomial P(Θ) = c0 + c1Θ + c2Θ2 +

· · · , we define P(D) = c0I + c1D + c2D2 + · · · , with I being the identity matrix.

Below, we study the stability of x̄ in canonical models. Formally, we must introduce

some dynamics to define the stability of x̄ and study agglomeration from there. For a

wide class of dynamics, however, we can focus on the analysis of the benefit matrix V.
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Lemma 4. Assume a canonical model and assume Assumption C. For a wide class

of myopic adjustment dynamics, x̄ is stable (unstable) if the largest eigenvalue of V,

excluding the one corresponding to 1 = (1, 1, . . . , 1), is smaller (greater) than zero.

Furthermore, if only the sign of the largest eigenvalue turns from negative to positive

at some ϕ∗ ∈ (0, 1), then a new spatial equilibrium branches from x̄ at ϕ∗
, toward the

direction of associated eigenvector. ■

Proof. See Section A.4.

We can assume, for example, the replicator dynamics (Taylor and Jonker, 1978) to define

local stability of spatial equilibria (see the proof of Lemma 4 for more examples).

Thus, we only need the eigenvalues of V. A useful fact is that, if {(Θk, zk)} are the

eigenpairs (eigenvalue–eigenvector pairs) of the normalized proximity matrix D, then

the eigenpairs of V = Ω(D) are given by {(Ω(Θk), zk)} (e.g., Horn and Johnson, 2012,

Section 1.1). Thus, we need the eigenpairs of D. For the sake of simplicity, we assume

that N is a multiple of four. Then, we have the following lemma.

Lemma 5 (Corollary of Akamatsu et al. (2012), Lemma 4.2). Assume Assumption C.

The largest eigenvalue of D is Θ0 ≡ 1, with z0 = (1, 1, . . . , 1) being the associated

eigenvector. Including Θ0, there are
N
2 + 1 distinct eigenvalues. Every eigenvalue Θk

(k ̸= 0) is a strictly decreasing function of ϕ, with limϕ↓0 Θk = 1 and limϕ↑1 Θk = 0.

Let Θmax denote the largest eigenvalue and Θmin denote the smallest eigenvalue of D

excluding Θ0, respectively. Further, assume that N is a multiple of four. Then,

Θmax = Θ1 ≡ 1 − ϕ

1 + ϕ
· 1 − ϕ2

1 − 2 cos(κ)ϕ + ϕ2 · 1 + ϕN/2

1 − ϕN/2 (A.3)

Θmin = ΘN/2 ≡
(

1 − ϕ

1 + ϕ

)2

(A.4)

at any ϕ, with κ = 2π
N , and Θmax = Θ1 has multiplicity two. For a vector z, let⟨zi⟩N−1

i=0 ≡
1

∥z∥ (zi)
N−1
i=0 denote its normalized version. Then, the eigenvector associated with Θmax

is z+1 ≡ ⟨cos(κi)⟩N−1
i=0 and z−1 ≡ ⟨sin(κi)⟩N−1

i=0 , and that associated with Θmin is zN/2 ≡
⟨(−1)i⟩N−1

i=0 = ⟨1,−1, 1,−1, . . . , 1,−1⟩. ■

Since Θk ∈ (0, 1) for all relevant k and Ω is well-defined for all [0, 1], the eigenpairs of

V = Ω(D) are in fact given by {(Ω(Θk), zk)}. Thus, with ωk ≡ Ω(Θk), the symmetric

equilibrium x̄ is stable if ωk < 0 for all k.

As discussed in Section 2, if agglomeration (dispersion) force of the model is too

strong, Ω(Θ) > 0 (Ω(Θ) < 0) can happen for all Θ whereby x̄ is unstable (stable) for

all ϕ. As we are interested in spatial agglomeration in the course of changing ϕ, we

assume that x̄ can switch its stability depending on ϕ:
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Assumption E (Endogenous agglomeration occurs). The values of the model parame-

ters are such that Ω switches its sign at least once in (0, 1). ■

Under Assumption E, we can define three prototypical classes of canonical models

(see Fig. 5 in the main text for illustration).

Definition 3. Under Assumption E, a canonical model with gain function Ω is

(a) Type L, if there can be one and only one Θ∗∗ ∈ (0, 1) such that Ω(Θ) < 0 for

Θ ∈ (0, Θ∗∗), Ω(Θ∗∗) = 0, and Ω(Θ) > 0 for Θ ∈ (Θ∗∗, 1).

(b) Type G, if there can be one and only one root Θ∗ ∈ (0, 1) for Ω such that Ω(Θ) > 0

for Θ ∈ (0, Θ∗), Ω(Θ∗) = 0, and Ω(Θ) < 0 for Θ ∈ (Θ∗, 1).

(c) Type LG, if there can be two Θ∗, Θ∗∗ ∈ (0, 1) such that Ω(Θ∗) = Ω(Θ∗∗) = 0

and Θ∗∗ < Θ∗
, with Ω(Θ) < 0 for Θ ∈ (0, Θ∗∗) ∪ (Θ∗, 1) and Ω(Θ) > 0 for

Θ ∈ (Θ∗∗, Θ∗).

As discussed in the main text, the classification corresponds to the composition

of the consequential dispersion forces in the model. We focus on the three model

classes defined above and consider the destabilization of x̄. There can be a fourth class

of models such that x is stable for medium levels of Θ but not for small or large Θ.

However, we are not aware of any model that falls into this category.

As we consider canonical models, there is a rational function Ω(·) = Ω♯(·)/Ω♭(·)
with some polynomials Ω♯

and Ω♭(·) > 0. That is, Ω♯(·) determines the sign of ωk and

thus governs the stability of x̄. We will focus on Ω♯
below, and let ω♯ ≡ Ω♯(Θk) so that

sgn[ωk] = sgn[ω♯
k]. Fig. A.1 schematically shows connections between {ω♯

k}, Ω♯(Θ),

and {Θk} to help understanding the following arguments.

Type L. By definition, there is Θ∗∗
such that Ω♯(Θ) < 0 for all Θ ∈ (0, Θ∗∗), that

Ω♯(Θ∗∗) = 0, and that Ω♯(Θ∗∗) > 0 for all Θ ∈ (Θ∗∗, 1). Thus, x̄ is stable if and only

if Θk ∈ (0, Θ∗∗), so that ω♯
k = Ω♯(Θk) < 0, for all k, i.e., if Θ∗∗ > maxk Θk = Θ1. Thus,

x̄ is stable for all (ϕ∗, 1) where ϕ∗∗
is the unique solution for Θ1(ϕ) = Θ∗∗

. Because

Ω♯(Θ) > 0 for all Θ ∈ (Θ∗∗, 1) and Θ1 is strictly decreasing, x̄ is unstable for all

(0, ϕ∗∗).

Type G. By definition, there is Θ∗
such that Ω♯(Θ) < 0 for all Θ ∈ (Θ∗, 1), that

Ω♯(Θ∗) = 0, and that Ω♯(Θ) > 0 for all Θ ∈ (0, Θ∗). By Lemma 5, {Θk(ϕ)} are

strictly decreasing from 1. Thus, x̄ is stable if and only if Θk ∈ (Θ∗, 1), so that

ω♯
k = Ω♯(Θk) < 0, for all k, i.e., if Θ∗ < mink Θk = ΘN/2. Thus, x̄ is stable for all (0, ϕ∗)

where ϕ∗ = (1 −
√

Θ∗)/(1 +
√

Θ∗) is the unique solution for ΘN/2 = Θ∗
. Because
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c0 ϕ∗∗ = ϕ∗
1 ϕ∗ = ϕ∗

N/2

− log(ϕ)
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ω♯
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Figure A.1: The relationships between Ω♯
, {Θk}, and {ω♯

k}.

Note: Top: Graphs of ω♯
k = Ω♯(Θk). Bottom left: Net gain function Ω♯

for a hypothetical Type LG model

with a quadratic net gain function of the form Ω♯(Θ) = c0 + c1Θ + c2Θ2
. Bottom right: The full set of

eigenvalues {Θk} of D. In the shaded regions of ϕ or Θ, x̄ is stable. For the ϕ axis, the negative log
scale is used for better readability, with the transport cost level being high toward the right. We have

max{Θk} = Θmax and min{Θk} = Θmin at any given level of ϕ.

Ω♯(Θ) > 0 for all Θ ∈ (0, Θ∗) and ΘN/2 is strictly decreasing, x̄ is unstable for all

(ϕ∗, 1) because ω♯
N/2 > 0 for the range.

Type LG. Via similar logic, we see x̄ is stable if ϕ ∈ (0, ϕ∗
N/2) ∪ (ϕ∗

1 , 1).

Spatial patterns. Consider a state where x̄ is stable. From Lemma 4, at ϕ∗
in Types

G or LG, a polycentric pattern with N/2 peaks branches from x̄, while at ϕ∗∗
in Types

L or LG, a monocentric configuration branches from x̄. □

Remark 1. The bifurcation towards the monocentric direction (k = 1) is a double
bifurcation, where the associated eigenvalue ω1 has multiplicity two, that is, there are

two linearly independent eigenvectors. Migration patterns at this bifurcation take the

form c+z+1 + c−z−1 for c+, c− ∈ R. Under Assumption C, only (c+, c−) = (c, 0) or (c, c)

for some c ∈ R are admissible (Ikeda et al., 2012). The conclusion of Proposition 1 is

not affected as both combinations yield monocentric configurations. ■

Remark 2. Although Definition 3 introduces three prototypical model classes, Type LG

models sometimes span multiple classes depending on parametric restrictions (e.g.,
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models by Pflüger and Tabuchi, 2010; Kucheryavyy et al., 2024). In such cases, the

parameter space can be partitioned to map model behavior to the typology. Also, the

definition of models often impose parametric restrictions that fix their class. In princi-

ple, flexible specifications would allow empirical identification of the class supported

by data through parameter estimation. ■

Remark 3. In Lemma 5, we assume that N is a multiple of four to ensure mink{Θk} =

Θ N
2
. This is inconsequential for the broad implication of Proposition 1 on spatial

patterns. If N is an even, mink{Θk} = min{Θ N
2 −1, Θ N

2
}. If N is an odd, mink{Θk} =

min{Θ⌊ N
2 ⌋

, Θ⌊ N
2 ⌋−1}. Thus, mink{Θk} corresponds to a polycentric direction, except

for the case N = 2 or 3 in which polycentric patterns cannot occur. ■

Remark 4. Beyond the local result of the proposition, Ikeda et al. (2012) character-

ized the possible equilibrium configurations and bifurcations in symmetric circular

economy by group-theoretic analysis. Two formal predictions are worth mentioning.

First, no symmetry-breaking bifurcations can occur after the emergence of a single-

peaked spatial pattern. For Type L models, the spatial configuration remains mono-

centric for the whole range of ϕ if the full dispersion is unstable (Figs. C.1, C.1B and 9A)

The other prediction is that, if M same-sized agglomerations are equidistantly

placed on a circle, a symmetry-breaking bifurcation may reduce their number to K <

M, with K again dividing N and the agglomerations remaining equidistant.

Proposition 1 (a) implies that Type G models yield
N
2 agglomerations, with further

bifurcations of the form
N
2 → N

4 → N
8 → · · · → 2 → 1 expected if N is a power of two

(Akamatsu et al., 2012; Ikeda et al., 2012; Osawa et al., 2017). For Type L, Takayama

et al. (2020) confirmed the emergence of single-peaked or monocentric patterns in the

(Murata and Thisse, 2005) model. Akamatsu et al. (2016) formally compares Forslid

and Ottaviano (2003) (Type G) and Helpman (1998) (Type L). All available formal

results in the literature corroborates with Proposition 1 and the numerical examples in

this study. ■

A.4 Proof of Lemma 4

A myopic adjustment dynamic is a system of ordinary differential equations that

describes the rate of change in the spatial distribution x. Denote the dynamic that

adjusts x over the set of all possible spatial distributions X ≡ {x ≥ 0 | ∑i∈I xi = 1}
by ẋ = f (x), where ẋ represents the time derivative satisfying ∑i∈I ẋi = 0 so that the

total population is invariant. For example, f (x) = f̃ (x,v(x)) where f̃ maps each pair

(x,v(x)) of a state and its associated payoff to a motion vector ẋ.
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We require the following conditions on f : (RS) f (x) = 0 ifx is a spatial distribution

in which all populated regions earn the same payoff level, i.e., vj(x
∗) = vk(x

∗) for all

j, k ∈ {i ∈ I | x∗i > 0}, (PC) v(x)⊤f (x) > 0 if f (x) ̸= 0, and (Sym) Pf (x) = f (Px)

for all permutation matrices P. We call dynamics that satisfy (RS), (PC), and (Sym)

admissible dynamics. The conditions (RS) and (PC) are called restricted stationality and

positive correlation, respectively (Sandholm, 2010). Also, (Sym) requires that f treats

all regions symmetrically. Finally, we assume that f admits a C1
extension to an open

neighborhood of X in RN
to use simple derivatives.

Admissible dynamics include the Brown–von Neumann–Nash dynamic (Brown

and von Neumann, 1950; Nash, 1951), the Smith dynamic (Smith, 1984), and Rieman-

nian game dynamics (Mertikopoulos and Sandholm, 2018). The projection dynamic

(Dupuis and Nagurney, 1993) and the replicator dynamic (Taylor and Jonker, 1978)

are representative instances of Riemannian game dynamics that satisfy (Sym), and are

often applied for regional models.

For the uniform distribution x̄, (RS) implies f (x̄) = 0, i.e., x̄ is a stationary point

of f . Denote the Jacobian matrix of f at x̄ by F = [ ∂ fi
∂xj

(x̄)]. Assume that F has no

eigenvalues with zero real parts. Then, x̄ is linearly stable if all the eigenvalues of

F, which we denote by {ηk}, have negative real parts, and linearly unstable if some

eigenvalue has positive real parts (see,e.g., Hirsch et al., 2012). Spatial equilibrium x̄ is

said to be stable (unstable) if it is linearly stable (unstable) under admissible dynamics.

The marginal case in which the largest eigenvalue has zero real parts is unimportant

as it often corresponds to measure-zero subsets of the parameter space.

Under admissible dynamics, the stability of x̄ can be determined by V, i.e., without

checking F explicitly. To exclude degenerate cases, assume that there is no other

equilibrium in the neighborhood of x̄. Then, (PC) implies that there is a neighborhood

O ⊂ X of x̄ such that v(x)⊤f (x) > 0 for all x ∈ O \ {x̄}. For small deviation

z = x− x̄withx ∈ O \{x̄}, f (x) ≈ f (x̄)+∇f (x̄)z = Fz, v(x) ≈ v(x̄)+∇v(x̄)z =

v̄1+ v̄
x̄ V, and 0 = 1⊤ẋ = 1⊤f (x) ≈ 1⊤Fz. Combined together, for all x ∈ O \ {x̄},

v(x)⊤f (x) ≈ (v(x̄) +∇v(x̄)z)⊤ (f (x̄) + Fz) = v̄
x̄ (Vz)⊤ (Fz) > 0. (A.5)

Under Assumption C, we can choose the same set of eigenvectors for V and F because

they are both symmetric circulant matrices. Let {zk} be the set of eigenvectors and let

ωk and ηk be the eigenvalues of V and F associated with zk, respectively. Then, for

each eigenvector zk except for z0 = 1, Eq. (A.5) yields

(Vzk)
⊤ (Fzk) = ωkηk > 0. (A.6)
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As F and V are both symmetric, ηk and ωk are both real. Thus, Eq. (A.6) implies

sgn[ηk] = sgn[ωk]. Therefore, x̄ is stable under all admissible dynamics if and only if

ωk < 0 for all k, excluding k = 0 that corresponds to z0 = 1. Likewise, x̄ is unstable if

and only if ωk > 0 for some k, again excluding k = 0.

Suppose exactly one ωk changes sign from negative to positive at ϕ∗
k . Then, from

Eq. (A.6), the corresponding eigenvalue of the Jacobian matrix of any admissible dy-

namic at x̄ must also cross zero at ϕ∗
k . Bifurcation theory shows that the system departs

from x̄ along the direction of the associated eigenvector zk, as it is tangent to the “un-

stable manifold” at the bifurcation point (see, e.g., Hirsch et al., 2012; Kuznetsov, 2004).

* * *

Appendices B to F are provided as a separate online appendix.
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This appendix collects derivations and numerical examples omitted from the main text.

Appendix B examines the evolution of Japanese cities from 1970 to 2020. Appendix C

presents numerical examples for an eight-region circular economy. Appendix D considers

alternative transport network geometries while preserving symmetry in local characteristics.

Appendix E studies variations in local characteristics within the circular economy. Appendix

F contains detailed derivations.
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B Evolution of cities

B.1 Development of high-speed transport networks in Japan

Figure B.1 reports the development of high-speed railway and highway networks, respec-

tively, in Japan between 1970 and 2020. Both networks were initially spurred by infrastructure

investments surrounding the 1964 Tokyo Olympics. Over this period, total highway length

increased from 1,119 km to 9,050 km, while high-speed rail expanded from 515 km to 3,106

km, which are more than eightfold and sixfold increases, respectively. The steady, long-run

expansion of these networks makes Japan a natural setting for studying comparative statics

with respect to transport costs.

(A) Transport networks

(B) Network lengths

Figure B.1: The development of high-speed network in Japan

Notes: Data source: The Digital National Land Information Download Service (Highway: https://nlftp.
mlit.go.jp/ksj/gml/datalist/KsjTmplt-N06-2023.html, High-speed railway: https://nlftp.mlit.go.
jp/ksj/gml/datalist/KsjTmplt-N05-2023.html).
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Figure B.2: Urban agglomerations of Japan in 2020

B.2 Japanese cities and their growths

We identify cities in Japan using the Grid Square Statistics from the Population Census

for 1970–2020. A city is defined as an urban agglomeration (UA), consisting of contiguous

1 km × 1 km grid cells with a population density of at least 1,000 persons/km
2

and a

total population of at least 10,000. Our results are robust to alternative threshold values.

Figure B.2 displays the 431 UAs identified in 2020. These UAs occupy 6% of Japan’s land

area while containing about 80% of the national population. Populated cells with fewer

than 1,000 residents are shown in grey, with darker shading indicating higher population

counts. We restrict the analysis to grid cells that are reachable by road from the four major

islands—Hokkaido, Honshu, Shikoku, and Kyushu. UAs are identified separately for each

census year from 1970 to 2020 (at five-year intervals), and consistent unique IDs are assigned

across years to track individual agglomerations over time. For details on the construction of

UAs, see Mori and Murakami (2025).

From 1970 to 2020, the total population in these cities grew by 55%, while the national

population increased by only 21%. The population of the largest city, Tokyo, has grown

by 67%, an increase about the same size of the second largest city, Osaka. Figures B.3

and B.5 provide closer looks. Population growth is typically associated with concurrent

areal growth (Fig. B.3A), but population density generally decreased during the 50 years

period (Fig. B.3B), in particular for small to medium-sized cities, indicating local spreading

of these cities. It is noted that the largest cities also experienced local spreading as evident

in their spatial distributions shown in Fig. 1C as well as Fig. B.4.

Figure B.5 plots cities’ areal growth rates against their population growth rates, both mea-

sured on a logarithmic scale. By definition, log(area) = log(population)− log(density), so

the diagonal line in each panel represents constant population density (i.e., a density ra-

tio of one). Cities above this line experienced a decline in density, whereas those below

experienced an increase. The vertical and horizontal reference lines indicate Japan’s ag-

gregate population growth ratio (1.21), and their intersection corresponds to a hypothetical

city whose population and area both grew at the national average rate. For most cities,

areal growth exceeded population growth. Relative to these reference lines, the northeast
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Figure B.3: Population and density growths from 1970 to 2020

Note: In Panel A, the dashed horizontal line indicates simple mean of the growth ratios of the identified Japanese

cities from 1970 to 2020 (1.45), and the dot-dashed line indicates the growth ratio of the total population of

Japan (1.21). Likewise, the dashed horizontal line in Panel B shows the arithmetic mean of the density growths

ratios. In both panels, marker color encodes the area growth ratio during the same period. For the city labels,

number in parentheses shows the change in a city’s population rank (or the invariant rank) from 1970 to 2020.

(A) The population distribution within Osaka in 1970 and 2020

(B) The population distribution within Nagoya in 1970 and 2020

Figure B.4: Local dispersion of Osaka (rank = 2) and Nagoya (rank = 3).

Note: The warmer colors indicate larger populations. The darkest grid cells have at least 20,000 inhabitants.

The other thresholds are 15,000, 10,000, 5,000, 2,000, and 1,000 inhabitants.
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Figure B.5: Population and area growths from 1970 to 2020

Note: The diagonal line in each panel represents the locus of unchanged population density, as it indicates

log(density ratio) = log(population ratio)− log(area ratio) = 0. Marker color encodes the population size in

2020 for the left panel, and the population density in 2020 for the right panel. The number in parenthesis after

the city names represents their rank in the respective senses, and top five cities are shown.

Figure B.6: Maximum and average employment density within a city in Japan in 1975–2014

Notes: The green and blue lines show the arithmetic means of maximum and average employment densities

within a city for years 1975, 1981, 1986, 1991, 1996, 2001, 2006, 2009, and 2014. The shaded area indicates the

range covering 90% of the values for individual cities. The grid-cell data of employment are obtained from the

Grid Square Statistics of the Census for Establishment (1975, 1981, 1986, 1991); Establishment and Enterprise

census (1996, 2001, 2006); Economic Census for Business Frame (2009 and 2014) of Japan.

quadrant indicates simultaneous expansion in population and area (overall growth), while

the southwest quadrant corresponds to joint decline, or urban shrinkage. The northwest

quadrant reflects relative urban sprawl (area growth accompanied by relative population

decline) whereas the southeast quadrant indicates relative densification (population growth

accompanied by relatively slow area expansion). The southeast quadrant contains very few

observations, suggesting that relative densification has been limited.

Employment distribution. The tendency of local dispersion is observed in alternative

indicator of agglomeration other than population. Figure B.6 shows the change in the mean

values of the maximum and average employment density within a city across all cities in

Japan from 1975 to 2014. Their long-run trend indicates that the geographical distribution
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(A) Japan (1970–2020), Census (B) Japan (2000–2020), LandScan
TM

(C) France (2000–2020), LandScan
TM

(D) China (2000–2020), LandScan
TM

(E) The US (2000–2020), LandScan
TM

(F) Germany (2000–2020), LandScan
TM

(G) India (2000–2020), LandScan
TM

Figure B.7: Global concentration and local dispersion

of employment in a city has flattened over the past half century.

B.3 Cities in other countries

Figure 1 in Section 1 uses Japanese Census data. To allow a parallel comparison between

different countries, we employ the the LandScan™ Global Population Database, developed

by the Department of Energy’s Oak Ridge National Laboratory (ORNL), as the basic grid

population data to see the evolution of cities. Cities are defined in the same manner as

for Japanese cities. To asses compatibility between the LandScan data and the census we

compare Census and the LandScan data for Japan. Figures B.7A and B.7B are, respectively,

based on the Census and the the LandScan data. The LandScan data is only available

after 2000, and are only roughly in agreement with the precise data based on Census. It is

also noted that, while the LandScan data is available every year, we employ 5-year steps to

avoid noises due to its data generation procedure that incorporates various interpolations.

Nonetheless, Figure B.7 confirms the broad tendency of nationwide concentration and local

flattening of the cities. To be consistent with our theory that assume a fixed total population,

we normalize the total population in each country to unity. In the cases of France, Germany

and Japan, the local flattening is apparent even without the normalization.
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C Eight regions

This section considers agglomeration processes in the N = 8 circular economy. For a selected

model from each model category, we follow stationary equilibria branching from x̄ and then

numerically check the local stability of those stationary equilibrium solutions under the

replicator dynamic (Taylor and Jonker, 1978).

Type L model. Figure C.1 considers a Type L model by Allen and Arkolakis (2014) (Sec-

tion F.2.4; we set α = 0.5, β = −0.3, and σ = 6.0). The model incorporates a local dispersion

force but no global dispersion force. The uniform equilibrium x̄ is stable when transport

costs are low (when ϕ is close to 1). If we start from x̄ and consider the process of a mono-

tonic decrease in ϕ from ϕ ≈ 1, then a unimodal pattern emerges due to the bifurcation at ϕ∗∗

[Proposition 1 (a)]. This is the bifurcation in the model. When ϕ decreases further, the spatial

pattern smoothly converges to a full concentration in a single region in the lower extreme

(ϕ ≈ 0). The local dispersion force is less important than the benefits of agglomeration when

interregional transportation is prohibitively costly. Mobile agents prefer concentrating on a

smaller number of regions because of the agglomeration forces. As ϕ increases, agglomera-

tion force due to costly transportation diminishes, and the relative rise in the local dispersion

force induces a crowding-out from the populated region to the adjacent regions. As a result,

the spatial pattern gradually flattens and connects to x̄ at ϕ∗∗
. We can interpret the region at

the mode of population distribution (region i such that xi > xi−1 and xi > xi+1 where mod

N for indices) as the location of an agglomeration. Then, this model endogenously produces

at most one agglomeration.

Type G model. Figure C.2 reports stable equilibrium patterns in the course of increasing

ϕ for the Krugman (1991) model (Section F.2.1; we set µ = 0.5, σ = 10, and L = 8.). In

Fig. C.2A, the black solid (dashed) curves depict the stable (unstable) equilibrium values of

xi at each ϕ. Figure C.2B is the schematic illustration of the stable spatial pattern on the path.

The letters in Fig. C.2B correspond to those in Fig. C.2A. The global dispersion force in the

Krugman model stems from competition between firms over consumers’ demand. If ϕ is

low (if transport costs are high), firms have few incentives to agglomerate, and the uniform

distribution is stable. If we increase ϕ, competition with firms in other regions becomes

fiercer, as the markets of other regions become closer. At some point firms are better off

forming small agglomerations so that each agglomeration has its dominant market area but

is relatively remote from other agglomerations of firms. At the so-called “break point” ϕ∗
, a

bifurcation from x̄ occurs and the spatial pattern is pushed towards the formation of
8
2 = 4

distinct agglomerations [Proposition 1 (b)]. A further increase in ϕ causes the second and

third bifurcations at ϕ∗∗
and ϕ∗∗∗

, respectively. These bifurcations sequentially double the

spacing between agglomerations, each time halving their number, 4 → 2 → 1, in a close

analogy to the first bifurcation at ϕ∗
. We can formally analyze the successive bifurcations if

we assume a specific model (Ikeda et al., 2012b; Akamatsu et al., 2012; Osawa et al., 2017,

see, e.g.,). At the higher extreme of ϕ, agents concentrate in a single region. This behavior
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can be understood as a gradual extension of the market area of each agglomeration.

Type LG model. With both local and global dispersion forces, Type LG models exhibit

an interplay between the number of agglomerations, spacing between them (as in Type G

models), and the spatial extent of each agglomeration (as in Type L models). Figure C.3A

shows the evolution of the number of agglomerations in the course of increasing ϕ under

the Pflüger and Südekum (2008)’s model (Section F.2.3; we set µ = 0.4, σ = 2.5, L = 4,

γ = 0.5, and ai = 1). The number of agglomerations in a spatial distribution is defined by

that of the local maxima therein. Figure C.3A exhibits the mixed characteristics of Figs. C.1

and C.2, as expected. When ϕ < ϕ∗
or ϕ > ϕ∗∗

, x̄ is stable. We interpret the number of

agglomerations in x̄ as either 8 (for a low ϕ) or 1 (for a high ϕ) to acknowledge that x̄ at the

low and high levels of ϕ are distinct. When ϕ gradually increases from ϕ ≈ 0, the number of

agglomerations reduces from 8 → 4 → 2 → 1 as in the Type G models (Fig. C.2), whereas it

is always 1 in the latter stage as per the Type L models (Fig. C.1). The initial stage is governed

by a decline in the global dispersion force, while the later stage is marked by a relative rise

of the local dispersion force.

Figure C.3B illustrates the spatial patterns associated with Fig. C.3A. Uniform pattern x̄ is

initially stable (Pattern A) and the first bifurcation at ϕ∗
leads to a quad-modal agglomeration

(B, C), whereas the second bifurcation to the formation of a bimodal agglomeration (D, E).

These transitions are in line with Fig. C.2 and are governed by the gradual decline in the

global dispersion force. A further decline in the global dispersion force increases the relative

importance of the local dispersion force. As a result, the bimodal agglomeration flattens

out gradually (F, G). When ϕ increases further, it reduces to a unimodal agglomeration (J,

K). The unimodal agglomeration flattens out as ϕ increases (L, M) until it converges to the

complete dispersion (N) at ϕ∗∗
.
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Figure C.1: Type L model (Allen and Arkolakis, 2014)
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Figure C.2: Type G model (Krugman, 1991)
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Figure C.3: Type LG model (Pflüger and Südekum, 2008)
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D Geographic advantages

The implications of Propositions 1 to 3 qualitatively generalize to different settings such as

one-dimensional line segment, two-dimensional spaces. The spatial distribution of agents

becomes polycentric in Type G models, whereas it becomes monocentric in Type L models.

The simplest way to introduce geographic asymmetry into our one-dimensional setting is

to consider a bounded line segment, which is a standard stylized setting in urban economic

theory. Ikeda et al. (2017b) considered a Type G model (Forslid and Ottaviano, 2003) in a line

segment. They showed that multiple agglomerations emerge as in the circular economy and

demonstrated that the evolution of spatial structure in a line segment approximately follows

the “period doubling” behavior (Akamatsu et al., 2012; Osawa et al., 2017). For Types L

and LG, Fig. D.1 reports examples of endogenous agglomeration patterns in the models by

Helpman (1998) and Pflüger and Südekum (2008). For both models, qualitative properties

of the spatial patterns are consistent with those discussed in Section C.

The two-dimensional counterpart of the symmetric circle is bounded lattices with peri-

odic boundary conditions, for which a basic theory of spatial agglomeration is provided in

Ikeda and Murota (2014). For Type G models, they typically produce multiple disjointed

agglomerations and period-doubling behavior as discussed in Section C (see, e.g., Ikeda

et al., 2012a, 2014, 2017a, 2018). As concrete examples, Figure 11 in the main text shows

endogenous equilibrium spatial patterns over a bounded square economy with 9 × 9 = 81
regions in the course of increasing ϕ for the Krugman and Allen–Arkolakis models. The pa-

rameters are the same as Figs. C.1 and C.2. Their agglomeration processes are qualitatively

consistent with Propositions 1 to 3 and examples in Section C, suggesting the robustness of

qualitative implications of our theoretical developments.

The implications of Proposition 1 seem to extend to different assumptions on transport

technology that are not formally covered by Assumption C. For example, linear transport

costs are often assumed in the literature (e.g., Mossay and Picard, 2011; Picard and Tabuchi,

2013; Blanchet et al., 2016). Mossay and Picard (2011) considered a variant of the Beckmann

model (Type L) and showed that the only possible equilibrium is a unimodal distribution

in a continuous line segment. Blanchet et al. (2016) considered a general Type L model

over a continuous one- or two-dimensional space; they showed that the equilibrium spatial

pattern for the Beckmann model is unique and given by a regular concave paraboloid, i.e., a

unimodal pattern. Picard and Tabuchi (2013) also considered a Type L general equilibrium

model in a two-dimensional space and showed that spatial distribution becomes unimodal.

The numerical results of Anas and Kim (1996) and Anas et al. (1998) in line segments bear

a close resemblance to, respectively, agglomeration behaviors of Type L and G models,

although they assume endogenous transport costs between locations.
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Figure D.1: Stable spatial patterns in a line segment.

Note: There are no asymmetries in regional characteristics except for geographic accessibility. The transport

cost between every consecutive pair of regions is uniform. The level of transport cost monotonically decreases

from top to bottom. Panels (A) and (B) consider a line segment with 65 locations. Panel (B) adapted from Ikeda

et al. (2017b) considers 17 locations; see the original paper for an extensive discussion.
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E Local advantages

This appendix introduces small region-specific asymmetries within a circular geography. We

show that improved interregional access raises population in regions with greater exogenous

advantage under global dispersion forces, but lowers it under local dispersion forces.

E.1 Evaluating the impacts of local characteristics

Consider a spatial model with the indirect utility function v. Let ai > 0 denote the innate

characteristics of region i, and write a = (ai)i∈I . For example, ai may represent the level

of exogenous amenities or productivity in region i25
. All regions are perfectly symmetric if

ai = ā > 0 for all i. In this case, the uniform population distribution x̄ is an equilibrium.

When equilibrium is unique, counterfactual analysis proceeds by examining how the

population distribution x responds to changes in interregional transport costs, holding the

calibrated regional characteristics fixed. This assumption that a remains unchanged under

the counterfactual shocks is central to quantitative predictions. Hence, it is important to

understand how a influences model outcomes.

Suppose now that a deviates slightly from ā, so that x̄ is no longer an equilibrium. If the

deviation is small, the resulting equilibriumx(a)will remain close to x̄ except for knife-edge

cases. Thus, we can view x(a) as a continuous function of a satisfying x(ā) = x̄.

To quantify the overall impact of variations in a, we define the covariance between each

region’s relative advantage and its deviation in population share from x̄:

ρ ≡ ∑
i∈I

Exogenous regional (dis)advantage︷ ︸︸ ︷
(ai − ā) (xi(a)− x̄)︸ ︷︷ ︸

Population deviation from x̄

. (E.1)

For example, if ρ = 0, variations in a have no impact on the spatial distribution. We assume

ρ > 0, reflecting the natural intuition that more advantaged regions attract more population.

Importantly, the response of ρ to changes in transport costs captures how the internal

structure of a model shapes its counterfactual behavior. In particular, it reveals the model’s

intrinsic directional bias: whether it systematically favors the concentration of population in

relatively advantaged regions (ai > ā) under transport cost shocks. An increase in ρ implies

that such regions gain population in the new equilibrium; a decrease implies the opposite.

E.2 Formal characterizations

We can analytically characterize the response of ρ under symmetric transport cost structures.

Two regions. Assume that two regions have the same local characteristics and assume that

x̄ = (x̄, x̄) is stable. Consider a marginal regional asymmetry of the form a = (ā + ϵ, ā − ϵ)

25
All endogenous mechanisms related to agents’ spatial distribution x, including endogenous amenities

(e.g., Diamond, 2016), are embedded in the indirect utility function v in our framework.
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Figure E.1: The curve of the utility gain ω for the two-region case.

with small ϵ, so that x̄ is perturbed to a new equilibrium x = (x̄ + ξ, x̄ − ξ) with small ξ.

We can assume that ξ > 0 and ϵ > 0. Then, by definition, we have

ρ = (a1 − ā)(x1 − x̄) + (a2 − ā)(x2 − x̄) = ϵξ + (−ϵ)(−ξ) = 2ϵξ > 0. (E.2)

Notably, we can obtain the analytical expression for ρ for a given spatial model. First,

we recall that the utility gain due to migration from x̄ is negative (ω < 0) as we assume x̄

is stable. Next, the utility gain induced by small regional asymmetry (ā + ϵ, ā − ϵ) can be

evaluated by the following elasticity, analogous to ω:

ω♮ ≡ ā
v̄

(
∂v1(x̄, ā)

∂a1
− ∂v2(x̄, ā)

∂a1

)
, (E.3)

where v̄ ≡ vi(x̄, ā). The dependence of v on a is made explicit. Then, we have:

Lemma 6. Assume N = 2. For the perturbed equilibrium under a = (ā + ϵ, ā − ϵ) with

small ϵ, we have ρ = −c · ω♮

ω where c ≡ 2ϵ2 x̄
ā . ■

Proof. Let f (x, a) ≡ v1(x, a)− v2(x, a) with x := x1 and a := a1. Then, f (x, a) = 0 since the

new spatial distribution x is an equilibrium. At (x, a) = (x̄, ā) and on the equilibrium curve

f (x, a) = 0, we have 0 = fx(x, a)ξ + fa(x, a)ϵ = x̄
v̄ fx(x, a) v̄

x̄ ξ + ā
v̄ fa(x, a) v̄

x̄ ϵ = ω v̄
x̄ ξ + ω♮ v̄

ā ϵ.

That is, ω < 0 and ω♮ > 0 should counterweight each other. From ρ = 2ϵξ, we obtain the

desired formula.

Lemma 6 implies the following result on the response of ρ to the increase in ϕ.

Proposition 4. Assume N = 2. If local regional characteristic is multiplicatively separable as

vi(x,a) = aivi(x)with vi(x) satisfying Assumption S (i.e., no other exogenous asymmetries),

sgn ρ′(ϕ) = sgn ω′(ϕ). (E.4)

Proof. Under the hypothesis of the claim, ω♮ = ā
v̄ (v1(x̄)− 0) = ā > 0. Then, ρ = −c · ω♮

ω =

− cā
ω and ρ′(ϕ) = cā

ω2 ω′(ϕ) where
′
denotes the differentiation by ϕ, implying Eq. (E.4).

There is a broad connection between the spatial scale of dispersion forces and the sign

of ρ′(ϕ). In Type G models, agglomeration occurs when ϕ increases. Reflecting this, for

A13



Type G models in the literature, we have ω′(ϕ) > 0 if x̄ is stable. Converse is true for Type L

models, for which dispersion occurs when transport access improves and ω′(ϕ) < 0 if x̄ is

stable. Fig. E.1 shows the curves of ω for the Krugman model (Type G) and the Redding–

Sturm model (Type L), which demonstrates that Types L and G can come to the opposite

conclusions in the two-region economy. If a model has only a global dispersion force, its

mechanisms strengthen the effects of exogenous local advantages in innate amenities, and

the converse is true for a model with only a global dispersion force.

For other forms of exogenous fundamentals, such clean characterization is not available.

For example, heterogeneities in innate regional productivity can affect the utility level of

other regions through interregional trade, and thus are not multiplicatively separable.

The circular geography. Nonetheless, we have a characterization of the response of ρ for

general local characteristics. Now suppose the symmetric circle (Assumption C). Several

notations and assumptions are in order. As we have seen in Section 3, the utility elasticity

matrix V = x̄
v̄ [

∂vi
xj
(x̄)] at x̄ is simply represented by the row-normalized proximity matrix

D. Suppose V = Ω(D) where Ω is a scalar-valued rational function that is continuous over

[0, 1] and the interpretation of Ω(D) is the same as in Section A.3. In an analogous manner,

let A = ā
v̄ [

∂vi
∂aj

(x̄)] be the utility elasticity matrix with respect to the local characteristic vector

a of interest, and suppose that A can be represented by D. Specifically, let A = Ω♮(D)

where Ω♮(·) is another rational function that is continuous over [0, 1]. In fact, regional

heterogeneities in a can be seen as deviations from ā, so the effects of such deviations on

the utility vector can be evaluated exactly the same manner as population deviations from

x̄ considered in the two-region case. Let

δ(Θ) = −Ω♮(Θ)

Ω(Θ)
, (E.5)

which corresponds to −ω♮

ω for the two-region case.

Proposition 5. Suppose Assumption C and assume that x̄ is stable. Then,

(a) ρ′(ϕ) > 0, if δ′(Θ) < 0 for all Θ ∈ (0, 1) such that Ω(Θ) < 0.

(b) ρ′(ϕ) < 0, if δ′(Θ) > 0 for all Θ ∈ (0, 1) such that Ω(Θ) < 0.

Proof. See Section E.4.

The multiplicatively separable case is the special case in which Ω♮(·) = ā. For the

general case with non-constant Ω♮
, our three model classes are not precisely mapped to

Proposition 5 (a) or (b). Still, there is a broad tendency that initial advantages are amplified

in Type G models, whereas they are diminished in Type L models. For example, the

regional-scale model considered in Redding and Rossi-Hansberg (2017) is Type L. If we

consider local productivity parameters as regional characteristic vector a, then the model

satisfies δ′(Θ) > 0 for all Θ ∈ (0, 1) when equilibrium is unique (see Remark 9 in Section F).

A14



(A) Type L (Uniqueness) (B) Type L (Multiplicity) (C) Type G

Figure E.2: Population share of the advantageous region 1 and covariance ρ

Likewise, the Krugman model is Type G and we show δ′(Θ) < 0 for all Θ ∈ (0, 1) if we

consider immobile demand li as regional characteristics (see Remark 6 in Section F).

E.3 Numerical examples

This section provides numerical examples for Proposition 5. To introduce exogenous asym-

metry, we multiply the utility in region 1 by a1 ≥ 1, whereas we let ai = 1 for all i ̸= 1. We

consider the Krugman model and Allen–Arkolakis model, and basic model parameters are

set to be the same as Fig. C.2 and Fig. C.1 except that region 1 has an exogenous advantage.

Figure E.2A reports equilibrium paths of x1 for the Allen–Arkolakis model (Type L)

under the uniqueness of the equilibrium. The curves depict region 1’s population share, x1,

at stable equilibria against ϕ. Four incremental settings a1 ∈ {1.000, 1.001, 1.005, 1.010} are

considered, including the baseline case with no location-fixed advantage (a1 = 1.000). We

have δ′(Θ) > 0 for all Θ ∈ (0, 1) and see that x1 − x̄ > 0 when a1 > 1 and x1 − x̄ increases as

a1 increases, which are intuitive. Additionally, x1 − x̄ decreases as ϕ increases. We confirm

that ρ(ϕ) > 0 and ρ′(ϕ) < 0 for all ϕ.

Figures E.2B and E.2C consider the Krugman and Allen–Arkolakis models under a

multiplicity of equilibria, respectively. Unlike the Allen–Arkolakis model, the Krugman

model admits multiple equilibria for some ϕ for any pair of the structural parameters (µ, σ).

Proposition 5 correctly predicts the sign of ρ′(ϕ) for the range of ϕ such that x̄ is stable when

a1 = 1; we have ρ′(ϕ) > 0 when ϕ ∈ (0, ϕ∗) for the Krugman model, whereas ρ′(ϕ) < 0
when ϕ ∈ (ϕ∗∗, 1) for the Allen–Arkolakis model.

In Fig. E.2C, the definition of ρ is modified for spatial patterns with unpopulated re-

gions. For the range ϕ ∈ (ϕ∗, ϕ∗∗), ρ is evaluated with respect to the four-centric pattern

(2x̄, 0, 2x̄, 0, 2x̄, 0, 2x̄, 0): ρ ≡ ∑i∈I(x)(xi − 2x̄)(ai − ā(x)), where I(x) = {i ∈ I | xi > 0} is

the set of populated regions and ā(x) ≡ 1
|I(x)| ∑i∈I(x) ai. We define ρ for two-centric pattern
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(4x̄, 0, 0, 0, 4x̄, 0, 0, 0) similarly. For the transitional phase after ϕ∗∗
we let

ρ ≡ ∑
i∈I(x)

(xi − x∗i )(ai − ā(x)), (E.6)

where x∗i corresponds to the stable solution for the symmetric case (a1 = 1).

For Fig. E.2B, we employ Eq. (E.6) as the definition of ρ for the case ϕ ∈ (0, ϕ∗∗), i.e., we

consider the deviation from the baseline equilibrium (a1 = 1). We observe that ρ′(ϕ) < 0
does not necessarily hold true for ϕ ∈ (0, ϕ∗∗). For instance, ρ′(ϕ) > 0 when ϕ is small.

Nonetheless, for the range of ϕ under which x̄ is stable, ρ decreases in ϕ, consistent with

Proposition 5.

E.4 Proof of Proposition 5

We derive the analytical expression of ρ. If all regions are populated in equilibrium, we have

v(x,a)− v̄(x,a)1 = 0, (E.7)

where we make the dependence of v on a explicit, v̄(x,a) ≡ ∑i∈I vi(x,a)xi is the average

utility, and 1 is N-dimensional all-one vector. The pair (x̄, ā) is a solution to Eq. (E.7).

Suppose that there is a spatial equilibrium nearby x̄ when a is marginally different from ā.

Let x(a) denote the perturbed version of x̄, which is a function in a. We assume x̄ is stable

so that studying a perturbed version of it makes sense.

The covariance ρ is represented as follows:

ρ ≡ (a− ā)⊤ (x(a)− x̄) = (Ca)⊤Cx(a) = a⊤Cx(a) (E.8)

where C ≡ I − 1
N11⊤ is the centering matrix. Let X ≡ [ ∂xi

∂aj
(ā)] be the Jacobian matrix of x

with respect to a at (x̄, ā). Then, x(a) ≈ x̄+ X(a− ā) = x̄+ XCa and thus ρ = a⊤CXCa

as Cx̄ = 0. The implicit function theorem regarding Eq. (E.7) at (x̄, ā) gives:

X = −
(

Vx − 1x̄⊤Vx − 1v(x̄)⊤
)−1 (

Va − 1x̄⊤Va

)
(E.9)

=
(

v̄
x̄

1
N11⊤ −

(
I − 1

N11⊤
)

Vx

)−1 (
I − 1

N11⊤
)

Va (E.10)

= x̄
v̄
(
(I − C)− C x̄

v̄ Vx
)−1 C v̄

ā
ā
v̄ Va (E.11)

= x̄
ā ((I − C)− CV)−1 CA (E.12)

where v̄ is the utility level, Vx ≡ [ ∂vi
∂xj

(x̄, ā)], Va ≡ [ ∂vi
∂aj

(x̄, ā)], V ≡ x̄
v̄ Vx, and A ≡ ā

v̄ Va.

For tractability, we focus on a specific form of A which covers many relevant cases.

Assumption A. Suppose Assumption C. Let A ≡ ā
v̄ [

∂vi
∂aj

] be the elasticity matrix of the utility

with respect to the local characteristic a, evaluated at (x̄, ā). There is a rational function Ω♮

that is continuous over [0, 1], positive whenever x̄ is stable, and satisfies A = Ω♮(D). ■
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Example 5. Suppose vi(x,a) = aivi(x), where ai > 0 is the exogenous level of local amenities

and v(x) = (vi(x))i∈I is the symmetric component of the utility function (i.e., v(x) satisfies

Assumption S). Then, A = āI and Ω♮(·) = ā > 0. ■

Under Assumptions C and A, X is real, symmetric, and circulant. Thus, the set of

eigenvectors of CXC can be chosen as in Lemma 5 (a) because it is a circulant matrix of the

same size as D. Let {λk}M
k=0 be the distinct eigenvalues of CXC. As CXC is symmetric, it

admits the eigenvalue decomposition

CXC = λ011
⊤ +

M−1

∑
k=1

λk

(
z+k z+k

⊤
+ z−k z−k

⊤)
+ λMzMz⊤M. (E.13)

This fact yields the following representation of ρ:

ρ = a⊤CXCa = ∑
k ̸=0

ã2
kλk, (E.14)

where ã ≡ (ãk) is the representation of a in the new coordinate system {zk}. We can drop

k = 0 because λ0 = 0, reflecting that z0 = 1 represents a uniform increase in a and thus

does not affect spatial equilibria. All the matrices in Eq. (E.12) are circulant and hence shares

the same set of eigenvectors. Thus, λk is obtained from Eq. (E.12) as follows:

λk =
x̄
ā

κkω♮
k

((1 − κk)− κkωk)
= − x̄

ā
ω♮

k
ωk

∀k ∈ K, (E.15)

where κk, ωk, and ω♮
k are the kth eigenvalues of C, V, and A, respectively, with κ0 = 0 and

κk = 1 for all k ̸= 0. As ωk = Ω(Θk) and ω♮
k = Ω♮(Θk) with {Θk}k∈K are the eigenvalues of

D because we assume G = Ω(D) and A = Ω♮(D),

λk = − x̄
ā

Ω♮(Θk)

Ω(Θk)
=

x̄
ā

δ(Θk) ∀k ∈ K (E.16)

and λ0 = 0 where δ(Θ) ≡ −Ω♮(Θ)
Ω(Θ)

.

From Eq. (E.14), ρ > 0 for all a if all {λk} are positive except for λ0 = 0. The denominator

of Eq. (E.16), Ω(Θk), must be negative for all k because x̄ is stable by assumption. Thus, we

see that ρ > 0 if Ω♮(Θ) > 0 for all Θ since Θk ∈ (0, 1) for all k ∈ K.

Proposition 5 follows by noting

ρ′(ϕ) = ∑
k ̸=0

ã2
k

dλk
dϕ

=
x̄
ā ∑

k ̸=0
ã2

kδ′(Θk)
dΘk
dϕ

= − x̄
ā ∑

k ̸=0
ã2

kδ′(Θk)

∣∣∣∣dΘk
dϕ

∣∣∣∣ .

From Lemma 5, {Θk}k∈K are strictly decreasing in ϕ. Thus, for ρ′(ϕ) > 0 (ρ′(ϕ) < 0), it is

sufficient that δ′(Θ) < 0 (δ′(Θ) > 0) for all Θ such that Ω(Θ) < 0.
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F Derivations

This section collects omitted derivations. The expression Fx denotes the Jacobian matrix of

a vector-valued function f (x) with respect to x, that is, Fx = [ ∂ fi
∂xj

]. For example, Vx ≡ [ ∂vi
∂xj

],

Ṽw ≡ [ ∂ṽi
∂wj

], and Wx ≡ [ ∂wi
∂xj

]. Throughout, v̄, w̄, ē and so on represent vi, wi, ei evaluated at

x̄. D denotes the row-normalized proximity matrix.

F.1 General derivations

F.1.1 The benefit matrix

The indirect utility function v of a spatial model often reduce to the following implicit form:

v(x) = ṽ(x,w), (F.1)

s(x,w) = 0. (F.2)

The condition Eq. (F.2) represents, e.g., the general equilibrium conditions for a given x that

defines endogenous variable w (e.g., wages) other than x as an implicit function of x. We

assume that Eq. (F.2) admits a unique solution of w at each x for v(x) to be well-defined.

Suppose s and v are continuously differentiable. Then, we have

Vx(x) = Ṽx(x) + Ṽw(x)Wx(x), (F.3)

Wx(x) = −Sw(x)
−1Sx(x), (F.4)

where Wx(x) is obtained by applying the implicit function theorem to Eq. (F.2).

Under Assumption C, all relevant matrices commute at x = x̄ because they are real,

symmetric, and circulant at x̄. Thus, Vx = S−1
w (SwṼx − ṼwSx) at x̄.

Example 6. Eq. (F.2) is often given by

si(x,w) = wixi − ∑
j∈I

mijej = 0, (F.5)

where regional expenditure is ei = e(wi, xi) with some nonnegative function e and M = [mij]

is the expenditure share matrix. For example, in the Krugman and Helpman models,

mij =
xiw1−σ

i ϕij

∑k∈I xkw1−σ
k ϕkj

. (F.6)

In matrix form, we can write y − Me = 0 where y = (wixi)i∈I . Then, in general,

Sx(x) = diag[w]−
(

diag[Me]− M diag[e]M⊤
)

diag[x]−1 − MEx, (F.7a)

Sw(x) = diag[x] + (σ − 1)
(

diag[Me]− M diag[e]M⊤
)

diag[w]−1 − MEw. (F.7b)
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Suppose Assumption C. Supposex = x̄ and let w̄ be the uniform level of {wi} at x̄. Then,

we have M = D at x = x̄. Suppose the scalars ϵx and ϵw are chosen to satisfy Ex = ϵxw̄I
and Ew = ϵw x̄I at x̄. Let ē = e(w̄, x̄) and ζ ≡ ē

w̄x̄ . We see that

Sx = −w̄
(
(ζ − 1)I + ϵxD − ζD2

)
, (F.8a)

Sw = x̄
(
(1 + ζ(σ − 1)) I − ϵwD − ζ(σ − 1)D2

)
. (F.8b)

If e(wi, xi) = wixi, then ϵx = ϵw = 1 and ζ = 1, thereby Wx = w̄
x̄ (σI + (σ − 1)D)−1D. ■

F.1.2 The payoff elasticity matrix with respect to local characteristics

In Eq. (E.12), X = [ ∂xi(ā)
∂ai

] = Xa acts as X̂ ≡ −V−1
x Va for z such that z⊤1 = 0. Thus, Va is of

interest.

For purely local characteristics (Example 5), since vi(x,a) = aivi(x), it follows that

Va = diag[v(x)]. At x̄, we have Va = v̄I. Thus, X̂ = −v̄V−1
x .

For regional characteristics that affect trade flows, the payoff function and the market

equilibrium condition are, respectively, modified to v(x,a) = ṽ(x,w,a) and s(x,w,a) = 0.

By applying the implicit function theorem, we see Va = Ṽa + ṼwWa = Ṽa − ṼwS−1
w Sa. As

all matrices commute at x̄ under Assumption C, it is equivalent to consider

X̂ = −
(

Ṽx − ṼwS−1
w Sx

)−1 (
Ṽa − ṼwS−1

w Sa

)
(F.9)

=
(
SwṼx − ṼwSx

)−1 (ṼwSa − SwṼa
)

. (F.10)

Example 7. For the regional model by Redding and Rossi-Hansberg (2017), we have

si(x,w,a) = wixi − ∑
j∈I

xiaiw1−σ
i ϕij

∑k∈I xkakw1−σ
k ϕkj

ej = 0. (F.11)

Thus, Sa = −
(
diag[Me]− M diag[e]M⊤)diag[a]−1 = − ē

ā
(
I − D2)

. See Section F.2.2. ■

Example 8. For the Krugman model, we have

si(x,w,a) = wixi − ∑
j∈I

xiw1−σ
i ϕij

∑k∈I xkw1−σ
k ϕkj

e(wj, xj, aj) = 0 (F.12)

where e maps the tuple (wj, xj, aj) to the regional expenditure. Then, we have Sa = −MEa,

or Sa = −ϵaD at x̄ where ϵa =
∂e(x̄,w̄,ā)

∂ai
. See Section F.2.1. ■

F.2 Model-specific derivations

We provide omitted derivations of the gain functions Ω, as defined in Section A.3, for the

examples in the main text. For derivations for other models mentioned in Sections 2.4

and 2.5, see Akamatsu et al. (2017), an earlier draft of the current paper.
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F.2.1 Krugman (1991) model

There are two types of workers, mobile and immobile, and their total masses are 1 and L,

respectively. x ≡ (xi)i∈I is the distribution of mobile workers. Each worker supplies one

unit of labor inelastically.

There are two industrial sectors: agriculture (abbreviated as A) and manufacturing

(abbreviated as M). The A-sector is perfectly competitive and a unit input of immobile labor

is required to produce one unit of goods. The M-sector follows Dixit–Stiglitz monopolistic

competition. M-sector goods are horizontally differentiated and produced under increasing

returns to scale using mobile labor as the input. The goods of both sectors are transported.

Transportation of A-sector goods is frictionless, while that of M-sector goods is of an iceberg

form. For each unit of M-sector goods transported from region i to j, only the proportion

1/τij arrives, where τij > 1 for i ̸= j and τii = 1.

All workers have an identical preference for both M- and A-sector goods. The utility of

a worker in region i is given by a two-tier form. The upper tier is Cobb–Douglas over the

consumption of A-sector goods CA
i and that of M-sector constant-elasticity-of-substitution

(CES) aggregate CM
i with σ > 1

CM
i ≡

(
∑
j∈I

∫ nj

0
qji(ξ)

σ−1
σ dξ

) σ
σ−1

, (F.13)

that is, ui = (CM
i )µ(CA

i )
1−µ

where µ ∈ (0, 1) is the constant expenditure of the latter. With

free trade in the A-sector, the wage of the immobile worker is equalized, and we normalize

it to unity by taking A-sector goods as the numéraire. Consequently, region i’s expenditure

on the M-sector goods is given by ei = µ(wixi + li) where li denotes the mass of immobile

workers in region i.
In the M-sector, to produce q units, a firm requires α + βq units of mobile labor. Profit

maximization of firms yields the price of differentiated goods produced in region i and

exported to j as pij =
σβ

σ−1 wiτij, which in turn determines gravity trade flow from j to i. That

is, when Xij denotes the price of M-sector goods produced in region i and sold in region j,
Xij = mijej where the share mij ∈ (0, 1) is defined by Eq. (F.6) with ϕij ≡ τ1−σ

ij . The proximity

matrix is thus [ϕij] = [τ1−σ
ij ].

Given x, we determine the market wage w ≡ (wi)i∈I by the M-sector product market-

clearing, zero-profit, and mobile labor market-clearing conditions. These conditions are

summarized by the trade balance wixi = ∑j∈I Xij, or Eq. (F.5) with e(xi, wi) = µ(wixi + li).
By adding up Eq. (F.5) for the Krugman model, we see ∑i∈I wixi =

µ
1−µ L, which constrains

the total income of mobile workers at any configuration x. The existence and uniqueness of

the solution for Eq. (F.5) follow from standard arguments (e.g., Facchinei and Pang, 2007).

Given the solution w(x) of Eq. (F.5), we have the indirect utility of mobile workers, which is

given by vi = ∆
µ

σ−1
i wi, where ∆i ≡ ∑k∈I xkw1−σ

k dki.
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Let li = l ≡ L
N for all i ∈ I . We have

∇ logv(x̄) =
µ

σ − 1
M⊤ diag[x]−1 − µM⊤ diag[w]−1Wx + diag[w]−1Wx (F.14)

=
1
x̄

µ

σ − 1
D +

1
w̄
(I − µD)Wx, (F.15)

where Eqs. (F.4) and (F.8) give Wx. By plugging δ = µ(w̄x̄+l)
w̄x̄ = 1 and ϵx = ϵw = µ to Eq. (F.8),

Wx =
w̄
x̄

(
σI − µD − (σ − 1)D2

)−1 (
µD − D2

)
. (F.16)

Then, Eqs. (F.15) and (F.16) imply

V = x̄∇ logv(x̄) =
µ

σ − 1
D + (I − µD)

(
σI − µD − (σ − 1)D2

)−1 (
µD − D2

)
, (F.17)

or equivalently, V = Ω(D) where

Ω(Θ) =
µ

σ − 1
Θ︸ ︷︷ ︸

(a)

+ (1 − µΘ)︸ ︷︷ ︸
(b)

(
1
σ

)
µΘ − Θ2

1 − µ
σ Θ − σ−1

σ Θ2︸ ︷︷ ︸
(c)

. (F.18)

From Eq. (F.18) we have V = Ω♭(D)−1Ω♯(D), where we define

Ω♯(Θ) ≡ µ

(
1

σ − 1
+

1
σ

)
Θ −

(
µ2

σ − 1
+

1
σ

)
Θ2, (F.19)

Ω♭(Θ) ≡ 1 − µ

σ
Θ − σ − 1

σ
Θ2. (F.20)

Remark 5. Using the Krugman model as an example, we discuss how economic forces

in a model are embedded in Ω. We recall that positive (negative) terms in Ω represent

agglomeration (dispersion) forces. In Eq. (F.18), (a) corresponds to the elasticity of price

index with respect to agents’ spatial distribution x, (b) to the elasticity of payoff with respect

to nominal wage w, (c) to the elasticity of wage with respect to agents’ spatial distribution.

Here, (a) and the second term in (b) corresponds to the so-called cost-of-living effect through

price index; (a) is positive, i.e., it is an agglomeration force, as the price index in a region

becomes lower when more agents (firms) locate geographically close regions; the second

term in (b) (i.e., −µΘ) is negative because higher wage in a region implies higher goods

prices in its nearby regions. Also, (b) as a whole is positive, meaning that the payoff of a

region is increasing in wages even with the negative effect through price index. The last

component (c) includes both positive and negative terms; in its numerator, the first term

(µΘ) is demand linkage where firms’ profits rise when they are close to regions with high

total income, and the second term (−Θ2
) is the market-crowding effect due to competition

between firms. The sign of (c) is Θ-dependent; for example, it is negative when Θ is high (ϕ

is low) and positive otherwise. The denominator of (c) represents the general equilibrium
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effects through the so-called short-run equilibrium condition under given x, i.e., Eq. (F.5).

As Ω♯
is obtained by combining these components and collecting terms according to the

order of Θ, these economic forces affect both the first- and second-order coefficients of Ω♯
.

Concretely, in Eq. (F.19),
µ

σ−1 Θ comes from (a),
µ
σ Θ comes from (b) × (c), − 1

σ Θ2
comes

from (b) × (c), and − µ2

σ−1 Θ2 = −
(

µ2

σ + µ2

σ(σ−1)

)
Θ2

comes from all three components while

its leading term −µ2

σ Θ2
comes from (b) × (c). Thus, by considering Ω♯

for a model, one

can examine the net effect of all economic forces in the model at once, and the net effect is

decomposed according to its spatial scale (i.e., the order of Θ). ■

Remark 6. To obtain Ω♮
for l = (li)i∈I , we evaluate Vl = −ṼwS−1

w Sl as A = l
v̄ Vl. From

Example 8, Sl = −µD. Also, Ṽw = v̄ ∂
∂w logv(x̄) = v̄

w̄ (I − µD) and Ṽl = 0. Thus,

Ω♮(Θ) = c
Θ(1 − µΘ)

Ω♭(Θ)
> 0 (F.21)

where c = l
w̄

µ
σ = 1−µ

σ x̄ > 0. It then follows that

δ(Θ) = − x̄
ā

Ω♮(Θ)

Ω(Θ)
= − cx̄

ā
Θ(1 − µΘ)

Ω♯(Θ)
. (F.22)

Straightforward algebra verifies that δ′(Θ) < 0 if Ω♯(Θ) > 0. ■

F.2.2 Helpman (1998) and Redding and Sturm (2008) model

Helpman (1998) removed the A-sector in the Krugman model and assumed that all workers

are mobile, and introduced the housing sector (abbreviated as H). Each region i is endowed

with a fixed stock ai of housing. Workers’ preference is Cobb–Douglas of M-sector CES

aggregate CM
i and H-sector goods CH

i , ui = (CM
i )µ(CH

i )γ
, where µ ∈ (0, 1) is the expenditure

share of the former and γ = 1 − µ ∈ (0, 1) is that for the latter.

There are two variants for assumptions on how housing stocks are owned: public landown-
ership (PL) and local landownership (LL). Helpman (1998) supposes PL in which housing stocks

are equally owned by all workers; the income of a worker in region i is the sum of the wage

and an equal dividend r > 0 of the total rental revenue in the economy. However, Ottaviano

et al. (2002), Murata and Thisse (2005), and Redding and Sturm (2008) assumed that housing

stocks are locally owned (i.e., LL). The income of a worker in region i is the sum of the wage

and an equal dividend of rental revenue in each region. In fact, the model by Redding and

Sturm (2008) is the LL version of the Helpman model.

Regarding the market equilibrium conditions, the only difference from the Krugman

model is regional expenditure ei on M-sector goods in each region:

[PL] ei = µ (wi + r) xi, (F.23)

[LL] ei = wixi. (F.24)
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Also, the market wage is given as the solution for Eq. (F.5). For the PL case, we set r = 1 for

normalization. For the LL case, w(x) is uniquely given up to normalization. The indirect

utility function is, with ∆i ≡ ∑j∈I xjw1−σ
j ϕji and r > 0,

[PL] vi =

(
xi

ai

)−γ

(wi + r)µ∆
µ

σ−1
i , (F.25)

[LL] vi =

(
xi

ai

)−γ

wµ
i ∆

µ
σ−1
i . (F.26)

Let ai = 1 for all i ∈ I . We compute that

V = x̄
(

µ

σ − 1
M⊤ diag[x]−1 + V̂wWx − γ diag[x]−1

)
, (F.27)

where [PL] V̂w ≡ µ
(

diag[w+ r1]−1 − M⊤ diag[w]−1
)

, (F.28)

[LL] V̂w ≡ µ
(

I − M⊤
)

diag[w]−1, (F.29)

and M is defined by Eq. (F.6). For the PL case, we obtain V = Ω(D) with

Ω(Θ) = −γ +
µ

σ − 1
Θ +

µ (µ − Θ)Θ(1 − Θ)

σ − µΘ − (σ − 1)Θ2 (F.30)

where we compute Wx from Eq. (F.7) with ζ = µ(w̄+1)
w̄ , ϵx = w̄+1

w̄ , ϵw = µ; we note that

w̄
w̄+1 = µ under our normalization. Thus, for the PL case, we can choose Ω♯

and Ω♭
that

satisfy V = Ω♭(D)−1Ω♯(D) as follows:

Ω♯(Θ) ≡ −γ +

(
µ

σ − 1
+

µ(µ + γ)

σ

)
Θ −

(
µ2

σ − 1
+

µ + γ

σ
− γ

)
Θ2, (F.31)

Ω♭(Θ) ≡ 1 − µ

σ
Θ − σ − 1

σ
Θ2

(F.32)

where we recall µ + γ = 1.

For the LL case, Wx is given in Example 6 and we obtain

Ω(Θ) = −γ +
µ

σ − 1
Θ +

µ(1 − Θ)Θ
σ + (σ − 1)Θ

. (F.33)

We can choose Ω♯
and Ω♭

as follows:

Ω♯(Θ) ≡ −γ +

(
µ

σ − 1
+

µ + γ

σ
− γ

)
Θ, (F.34)

Ω♭(Θ) ≡ 1 +
σ − 1

σ
Θ. (F.35)

Remark 7. Definition 3 classifies canonical models based on the spatial scale of the “effective”

dispersion forces. The Helpman model with public landownership Eq. (F.31) has global

dispersion forces because c2 < 0 under Assumption E. However, unlike the Krugman model,
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the global dispersion forces in the Helpman model are not “effective” in the sense that, under

any admissible values of µ and σ, this force does not stabilize the uniform distribution for

any level of transport costs. If we drop the local dispersion force c0 < 0 from Ω♯
, we have

c1Θ + c2Θ2 > 0 for all Θ and x̄ is always unstable. Thus, the only dispersion force in the

Helpman model that can stabilize x̄ is its local dispersion force. ■

Remark 8. Equilibrium is unique when γσ = (1 − µ)σ > 1 (Redding and Sturm, 2008). For

both PL and LL, this condition implies that Ω♯(Θ) < 0 for all Θ ∈ (0, 1). ■

Remark 9. The regional model in §3 of Redding and Rossi-Hansberg (2017) is a variant of

the Helpman model with LL, in which variable input of mobile labor depends on region i
(i.e., productivity differs across regions). The cost function of firms in region i is Ci(q) =

wi(α + βiq). The market equilibrium condition for this case is, with ai ≡ β1−σ
i > 0, given by

si(x,w) = wixi − ∑
j∈I

xiaiw1−σ
i ϕij

∑k∈I xkakw1−σ
k ϕkj

wjxj = 0. (F.36)

The payoff function is given by Eq. (F.29) with ∆i = ∑k∈I xkakw1−σ
k ϕki.

From Example 7, Sa = − w̄x̄
ā (I − D) (I + D) as ē = w̄x̄. Also, we have Ṽw = v̄

w̄ µ(I − D),

Ṽa = v̄
ā

µ
σ−1 D, and Sw = σx̄Ω♭(D). As Va = Ṽa − ṼwS−1

w Sa and A = ā
v̄ Va = Ω♮(D), we

compute

Ω♮(Θ) = c
(σ − 1) + σΘ

Ω♭(Θ)
> 0 (F.37)

where c ≡ v̄
ā

µ
σ > 0. This in turn implies

δ(Θ) = − x̄
ā

Ω♮(Θ)

Ω(Θ)
= − cx̄

ā
(σ − 1) + σΘ

Ω♯(Θ)
(F.38)

where Ω♯(Θ) is that for the LL case Eq. (F.35). If (1 − µ)σ > 1, δ′(Θ) > 0 for all Θ. ■

F.2.3 Pflüger and Südekum (2008) model

The Pflüger–Südekum model builds on Pflüger (2004) and introduces the housing sector

(denoted by H). A quasi-linear upper-tier utility is assumed: ui = CA
i + µ log CM

i + γ log CH
i .

The production cost for a firm in i ∈ I is αwi + βq. Then, w is given as follows:

wi =
µ

σ ∑
j∈I

ϕij

∑k∈I ϕkjxk
(xj + lj). (F.39)

The indirect utility of a mobile worker in region i is

vi(x) =
µ

σ − 1
ln[∆i]− γ ln

xi + li
ai

+ wi, (F.40)
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where ∆i = ∑j∈I ϕjixj, and li and ai denote the mass of immobile workers and amount of

housing stock in region i, respectively. The nominal wage in region i is given by Eq. (F.39).

Let li = l and ai = a for all i. Then, we see that V = 1
v̄ Ω♯(D) with

Ω♯(Θ) = − γ

1 + L
+ µ

(
1

σ − 1
+

1
σ

)
Θ − µ

σ
(1 + L)Θ2. (F.41)

F.2.4 Allen and Arkolakis (2014) model

The Allen–Arkolakis model is a perfectly competitive Armington (1969)-based framework

with positive and negative local externalities. We abstract away all exogenous differences

in regional fundamentals. The productivity of region i is proportional to xα
i with α > 0,

representing positive externalities. The market equilibrium condition is

si(x,w) = wixi − ∑
j∈I

w1−σ
i xα(σ−1)

i ϕij

∑k∈I w1−σ
k xα(σ−1)

k ϕkj

wjxj = 0. (F.42)

With market wage w, we have vi(x) = x−β
i wi∆

1
σ−1
i with ∆i ≡ ∑k∈I w1−σ

k xα(σ−1)
k ϕki. With

β < 0, xβ
i represents negative externalities from congestion. Here, we follow the original

study in terms of the sign of β, while the main text uses β as the magnitude of this externality

to streamline exposition. We have V = Ω♭(D)−1Ω♯(D) with

Ω♯(Θ) =

(
α + β − 1 + α

σ

)
+

(
α + β +

1 − β

σ

)
Θ, (F.43)

Ω♭(Θ) = (σ + (σ − 1)Θ) (1 − Θ) . (F.44)

The case with no externalities (α = 0 and β = 0) reduces to the Armington (1969)

framework, and ω = − 1
σ(σ+(σ−1)Θ)

< 0. The intrinsic working of general equilibrium

effects induced by love for variety in the Armington model is in creating a dispersion

force, and it is in a sense “global” because it depends on Θ. However, in the context of

net agglomeration incentive at the symmetry with nonzero spillovers, this force is mainly

related to the denominator Ω♭
, and Ω♯

summarizes the net trade-off between agglomeration

and dispersion forces that govern the stability of x̄.

Figure F.1 classifies spatial patterns and their stability under Assumption C, which can

be seen as a refinement of Figure I in Allen and Arkolakis (2014) under Assumption C. A

sufficient condition for the equilibrium uniqueness is α+ β ≤ 0 (Range 3), which means there

is net local dispersion force and Ω♯(Θ) < 0 for all Θ. In Range 3, x̄ is the only equilibrium.

F.2.5 Krugman and Venables (1995) model

Krugman and Venables (1995) considers intermediate inputs. When we interpret the regional

share of manufactured good production as the state variable, the model is Type G. With

input share of manufactured good in production being α, Fujita et al. (1999), Appendix 14.1,
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Figure F.1: Uniqueness and stability of equilibria in the Allen–Arkolakis model.

derives a concise formula for Ω. Namely, in the case that “agricultural” good is produced

by a constant returns technology,

Ω(D) = Ω♭(D)−1
(

α

(
1 +

σ − 1
σ

)
D − (1 + α)2D2

)
(F.45)

with an appropriately defined Ω♭
, showing that the model is Type G. Also, if the “agricul-

tural” sector exhibits decreasing return, an extra local dispersion force (a term c0I such that

c0 < 0) emerges, so that the model becomes Type LG (Fujita et al., 1999, Section 14.4).

F.2.6 Kucheryavyy et al. (2024) model

Kucheryavyy et al. (2024) considers a unified framework that nests Allen and Arkolakis

(2014) and Krugman (1991) as special cases. For this model in the symmetric two-region

economy, the sign of the utility gain ω coincides with the following function of Θ:

Ω♯(Θ) ≡ −(1 − α) + (1 − (1 − β)ζ + µ)Θ − (α + (1 − (1 − β)ζ)µ)Θ2, (F.46)

where the notations follow the original paper except for the transport cost index Θ.

For deriving the above Ω♯
, we note that, when evaluated at x = 1, V′(x) in Appendix

D of Kucheryavyy et al. (2024) is essentially a negative constant multiple of the (net) utility

gain, as the stability condition for the uniform distribution in their notation is V′(1) > 0 (see

their Appendix B.4).

As seen, the model is Type LG in its most general form. Importantly, the case (α, ζ, µ) =

(1, 1, β) corresponds to a Krugman-type model, as we observe Eq. (F.46) reduces to a func-

tion of the form c1Θ − c2Θ2
. Also, α < 1 and ζ = 1 corresponds to the Allen–Arkolakis

framework, for which we confirm −(1 − α) < 0 represents a local dispersion force. It is

noted that Ω♯(1) = (1 − µ)(1 − β). If µ < 1, then Ω♯(1) > 0, so that Ω♯
must have one and

one zero for Θ ∈ (0, 1), so that x̄ is stable only for low transport costs.

A26



References for Supplementary Materials

Akamatsu, Takashi, Tomoya Mori, Minoru Osawa, and Yuki Takayama, “Spatial scale of agglom-

eration and dispersion: Theoretical foundations and empirical implications,” 2017. Unpublished

manuscript, MPRA Paper No. 84145.

, Yuki Takayama, and Kiyohiro Ikeda, “Spatial discounting, Fourier, and racetrack economy: A

recipe for the analysis of spatial agglomeration models,” Journal of Economic Dynamics and Control,
2012, 99 (11), 32–52.

Allen, Treb and Costas Arkolakis, “Trade and the topography of the spatial economy,” The Quarterly
Journal of Economics, 2014, 129 (3), 1085–1140.

Anas, Alex and Ikki Kim, “General equilibrium models of polycentric urban land use with endoge-

nous congestion and job agglomeration,” Journal of Urban Economics, 1996, 40 (2), 232–256.

, Richard Arnott, and Kenneth A Small, “Urban spatial structure,” Journal of Economic Literature,
1998, 36 (3), 1426–1464.

Armington, Paul S., “A theory of demand for product distinguished by place of production,” Inter-
national Monetary Fund Staff Papers, 1969, 16 (1), 159–178.

Blanchet, Adrien, Pascal Mossay, and Filippo Santambrogio, “Existence and uniqueness of equilib-

rium for a spatial model of social interactions,” International Economic Review, 2016, 57 (1), 36–60.

Diamond, Rebecca, “The determinants and welfare implications of US workers’ diverging location

choices by skill: 1980-2000,” American Economic Review, 2016, 106 (3), 479–524.

Facchinei, Francisco and Jong-Shi Pang, Finite-dimensional Variational Inequalities and Complementarity
Problems, Springer Science & Business Media, 2007.

Forslid, Rikard and Gianmarco I. P. Ottaviano, “An analytically solvable core-periphery model,”

Journal of Economic Geography, 2003, 33 (3), 229–240.

Fujita, Masahisa, Paul R. Krugman, and Anthony Venables, The Spatial Economy: Cities, Regions,
and International Trade, Princeton University Press, 1999.

Helpman, Elhanan, “The size of regions,” in David Pines, Efrainm Sadka, and Itzhak Zilcha, eds.,

Topics in Public Economics: Theoretical and Applied Analysis, Cambridge University Press, 1998,

pp. 33–54.

Ikeda, Kiyohiro and Kazuo Murota, Bifurcation Theory for Hexagonal Agglomeration in Economic Geog-
raphy, Springer, 2014.

, , and Takashi Akamatsu, “Self-organization of Lösch’s hexagons in economic agglomeration

for core-periphery models,” International Journal of Bifurcation and Chaos, 2012, 22 (08), 1230026.

, , and Yuki Takayama, “Stable economic agglomeration patterns in two dimensions: Beyond

the scope of central place theory,” Journal of Regional Science, 2017, 57 (1), 132–172.

, , Takashi Akamatsu, and Yuki Takayama, “Agglomeration patterns in a long narrow economy

of a new economic geography model: Analogy to a racetrack economy,” International Journal of
Economic Theory, 2017, 13, 113–145.

, , , Tatsuhito Kono, and Yuki Takayama, “Self-organization of hexagonal agglomeration

patterns in new economic geography models,” Journal of Economic Behavior & Organization, 2014,

99, 32–52.

A27



, Mikihisa Onda, and Yuki Takayama, “Spatial period doubling, invariant pattern, and break

point in economic agglomeration in two dimensions,” Journal of Economic Dynamics and Control,
2018, 92, 129–152.

, Takashi Akamatsu, and Tatsuhito Kono, “Spatial period-doubling agglomeration of a core–

periphery model with a system of cities,” Journal of Economic Dynamics and Control, 2012, 36 (5),

754–778.

Krugman, Paul R., “Increasing returns and economic geography,” Journal of Political Economy, 1991,

99 (3), 483–499.

and Anthony J. Venables, “Globalization and the Inequality of Nations,” The Quarterly Journal of
Economics, 1995, 110 (4), 857–880.

Kucheryavyy, Konstantin, Gary Lyn, and Andrés Rodríguez-Clare, “Spatial equilibria: The case of

two regions,” Journal of International Economics, 2024, 152, 104008.

Mori, Tomoya and Daisuke Murakami, “Sustainability of cities under declining population and

decreasing distance frictions: The case of Japan,” 2025.

Mossay, Pascal and Pierre M. Picard, “On spatial equilibria in a social interaction model,” Journal of
Economic Theory, 2011, 146 (6), 2455–2477.

Murata, Yasusada and Jacques-François Thisse, “A simple model of economic geography à la

Helpman–Tabucbi,” Journal of Urban Economics, 2005, 58 (1), 137–155.

Osawa, Minoru, Takashi Akamatsu, and Yuki Takayama, “Harris and Wilson (1978) model revisited:

The spatial period-doubling cascade in an urban retail model,” Journal of Regional Science, 2017, 57
(3), 442–466.

Ottaviano, Gianmarco I. P., Takatoshi Tabuchi, and Jacques-François Thisse, “Agglomeration and

trade revisited,” International Economic Review, 2002, 43, 409–436.

Pflüger, Michael, “A simple, analytically solvable, Chamberlinian agglomeration model,” Regional
Science and Urban Economics, 2004, 34 (5), 565–573.

and Jens Südekum, “Integration, agglomeration and welfare,” Journal of Urban Economics, March

2008, 63 (2), 544–566.

Picard, Pierre M. and Takatoshi Tabuchi, “On microfoundations of the city,” Journal of Economic
Theory, 2013, 148 (6), 2561–2582.

Redding, Stephen J. and Daniel Sturm, “The cost of remoteness: Evidence from German division

and reunification,” American Economic Review, 2008, 98 (5), 1766–1797.

and Esteban Rossi-Hansberg, “Quantitative spatial economics,” Annual Review of Economics, 2017,

9, 21–58.

Taylor, Peter D. and Leo B. Jonker, “Evolutionarily stable strategies and game dynamics,” Mathemat-
ical Biosciences, 1978, 40, 145–156.

A28


	Introduction
	The two-region economy
	The Beckmann model: A ``local'' dispersion force
	The Braid model: A ``global'' dispersion force
	Benefit matrix and the spatial scale of economic forces
	General equilibrium models
	The three model classes

	Many regions
	The stability of the symmetric equilibrium
	Proximity gains and deviation patterns
	Contrasting implications for spatial patterns
	Evolution of spatial patterns

	Asymmetries
	Geographic accessibility
	Local fundamentals
	The combination: A quantitative example
	On quantitative spatial models

	Concluding remarks
	Proofs
	Proof of lem:omega-stab
	Proof of lem:gain-formula
	Proof of prop:classification
	Proof of lem:stability

	Evolution of cities
	Development of high-speed transport networks in Japan
	Japanese cities and their growths
	Cities in other countries

	Eight regions
	Geographic advantages
	Local advantages
	Evaluating the impacts of local characteristics
	Formal characterizations
	Numerical examples
	Proof of Proposition 2

	Derivations
	General derivations
	Model-specific derivations


