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1 Introduction

Urban development often exhibits patterns that appear contradictory at first glance. In
Japan, over the five decades from 1970 to 2020, urban populations became increasingly
concentrated in larger cities. The population share of the top 100 cities rose by 19 %,
while that of the remaining cities fell by 17 %, as reflected in the flatter slope of the
rank-size plot (Fig. 1A). Concurrently, however, populations became more spatially
dispersed within individual cities. The average city experienced a 35 % decline in its
maximum population density and a 24 % decline in average density (Fig. 1B), a trend
evident in within-city distributions (e.g., Fig. 1C). Such a dual trend of economy-wide
concentration and intra-urban decentralization is not unique to Japan but is observed
across diverse contexts, including China, France, and the United States.!

How can population simultaneously concentrate across cities and spread out within
them? Transport costs have been central to theories of economic agglomeration and
dispersion. Indeed, Japan’s spatial reorganization coincided with the rapid expansion
of nationwide high-speed railway and highway networks, which were essentially de-
veloped from scratch between 1970 and 2020.2 However, interpreting this dual pattern
through existing theory is not straightforward. This is because most analyses rely on
highly stylized few-location settings, , which makes it difficult to analyze how agglom-
eration and dispersion occur in complex spatial economies with many locations.

To address this, the present study develops a unified theoretical framework that
distinguishes between “local” dispersion forces acting within cities and “global” disper-
sion forces acting across them. The core intuition is that dispersion, or the tendency for
economic activity to spread out, operates at two distinct spatial scales: one that pushes
agents toward the fringes of their own city, and another that repels cities away from one
another. This distinction provides a coherent basis for classifying spatial models, clar-
ifying how their comparative statics differ and how transport-induced reorganization
depends on the dominant type of dispersion force in many-location settings.

To understand the core intuition, consider a hypothetical many-location economy
with mobile agents, such as households or firms, making location choices. For expo-
sition purposes, “locations” refer to generic discrete units such as regions, counties,
cities, or grid cells. Suppose that agents benefit from proximity to others through some

agglomeration forces. In the absence of dispersion forces, everyone concentrates in a

ISee Appendix B for more detailed discussion. Combes et al. (2023) report similar evidence for
France using newly constructed panel data spanning 1760-2020.

2Between 1970 and 2020, the total length increased from 1,119 km to 9,050 km for highways, and
from 515 km to 3,106 km for high-speed railways. This is an increase of more than eight times and six
times, respectively. See Fig. B.1 in Appendix B.
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Figure 1: Global concentration and local dispersion in Japan from 1970 to 2020.

Note: A city is defined as a cluster of contiguous 1km-by-1km grid cells, each with a population density of
at least 1,000/km? and collectively comprising at least 10,000 residents. The number of cities decreased
from 504 in 1970 to 431 in 2020. Panel (B) shows the annual cross-city arithmetic means of maximum
and average population densities along with the 95% bootstrap confidence interval. Panel (C) shows the
within-city population distribution in Tokyo in 1970 and 2020. For further discussion, see Appendix B.
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Figure 2: Spatial distributions in a square economy with uniform local fundamentals.

single location, as illustrated by Fig. 2A.

First, consider the negative externalities that arise within a location, depend on
its own population, and affect only its residents. We term such externalities “local”
dispersion forces. A representative example is crowding in the market for non-tradable
goods. For instance, if the housing supply is inelastic, population growth within
a location drives up housing prices, creating incentives for residents to relocate to

nearby, less expensive areas. Agents move incrementally toward the periphery to



mitigate congestion while still benefiting from proximity to the core. In equilibrium,
this tension gives rise to a single-peaked monocentric spatial pattern, characterized by
a dominant center surrounded by lower-density fringes, as Fig. 2B illustrates.

By contrast, some negative externalities spill across locations. We refer to these as
“global” dispersion forces. A key example is market crowding through interregional
trade in the presence of immobile factors such as land or other natural resources.
Through trade, a large central city can use its agglomeration advantages to dominate
nearby markets, making surrounding locations unattractive for producers. When
transport costs are sufficiently high, producers may instead locate farther from the
center, where competition is weaker and local demand can support entry. The result
is a spatial pattern with multiple agglomerations that compete for market access and
scarce resources and therefore repel each other across space, as Fig. 2C illustrates.

As transport costs decline, local and global dispersion forces exert countervailing
influences. On a global scale, winners and losers can emerge. Improved transport
access extends the spatial reach of firms and consumers, intensifying market crowding
between economic centers. This undermines smaller agglomerations, driving eco-
nomic activities to concentrate further in a limited number of major hubs. However,
on the local scale, lower transport costs reduce the relative advantages of proximity,
fostering spatial spread within cities due to congestion forces. These opposing mech-
anisms can jointly give rise to a dual pattern: economy-wide concentration alongside
decentralization within each agglomeration.

Distinguishing between local and global dispersion forces helps clarify the equi-
librium spatial patterns implied by models of economic agglomeration and the com-
parative statics they generate. A wide range of spatial models can be classified into
three broad types: (i) models with only local dispersion forces, (ii) models with only
global dispersion forces, and (iii) models that incorporate both. These model classes
yield fundamentally different predictions about how declining transport costs shape
the spatial economy. In turn, quantitative spatial models can produce sharply diver-
gent counterfactual outcomes depending on the dispersion forces they embed. For
example, lower transport costs tend to promote spatial spread across locations when
local dispersion forces dominate (e.g., Helpman, 1998; Allen and Arkolakis, 2014), but
promote further agglomeration toward central locations when global dispersion forces
are primary (e.g., Krugman, 1991). In short, whether transport improvements lead to
spatial spreading or further concentration depends on the spatial scale at which disper-
sion forces operate. Consequently, transport policies intended to support peripheral
locations may succeed or backfire depending on whether the models guiding these

policies adequately capture the relevant dispersion forces.



2 The two-region economy

To introduce key concepts, we consider two-location models throughout this section,

and proceed to many-location settings in later sections.

Preliminaries. There are perfectly mobile agents (e.g., households) who choose their
location to maximize utility. Throughout, locations are called regions for convenience.
Let x; > 0 denote the continuous mass of agents in the region i € {1,2}, where
x1 + x2 = 1. The indirect utility of agents in the region i is a differentiable function
of the spatial distribution = (x1, x) and is indicated by v;(x). A spatial equilibrium
is a spatial distribution * in which no agent is motivated to relocate. For example, if
xi, x5 > 0, then «* is a spatial equilibrium if and only if v;(x*) = vp(x*).

Transport between regions is costly, and ¢ € (0,1) measures the ease of transport
between regions. Higher values of ¢ indicate better access. For later use, we also
introduce the proximity matrix [¢;;] following Matsuyama (2017), where ¢;; € (0,1] is

the ease of transport from region i to j. For the two-region case in this section,

o e[
¢ P22 ¢ 1

To focus on forces driven by transport costs and the endogenous spatial distribution
of agents, region-specific characteristics (e.g., innate amenity or productivity) are as-
sumed to be homogeneous. With these common settings in place, we consider a series
of specifications for v(x) = (v1(x), v2(x)), including general equilibrium models such

as Krugman (1991); Helpman (1998); Tabuchi (1998); Redding and Sturm (2008); Allen
and Arkolakis (2014), to illustrate the core ideas.

2.1 The Beckmann model: A “local” dispersion force

We start with the following parsimonious specification:
o (44
Uz'(a,') = X; ﬁ(ZcPZ]x]) (06,,3 > 0) (2)
j

p

The first term, x; *, captures the localized congestion force within each region, while
the second term is positive externalities between regions or the agents’ desire to be

close to each other. We call this the Beckmann model, following Beckmann (1976).3

3Beckmann studied spatial agglomeration in a continuous one-dimensional space. To streamline
the exposition, we consider its discrete-space and multiplicative analog.
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Figure 3: Stability of the symmetry in the Beckmann model (¢« =1/2,8 =1/6)

The symmetric distribution of agents, = (3, 1), is always a spatial equilibrium.

In fact, if we define the utility difference between the two regions by

Az) = v1(z) — v2(), ®)

we confirm A(z) = 0.

While & is an equilibrium, with both agglomeration and dispersion forces, & is not
stable if the former dominates the latter. To assess the stability of &, we examine the
incentive of movers. Consider a small mass of agents moving from region 2 to 1, so that
x1 rises and x; falls symmetrically. If A decreases under this perturbation, then A < 0
after the move: utility in region 2 exceeds that in region 1, and the movers will prefer to
return. This induces a restoring force and hence & is locally stable. If A increases, then
A > 0 after the move: the movers prefer to stay in region 1, and the deviation attracts
additional movers now that the utility is higher in region 1. Hence, & is unstable.

Figure 3 illustrates the above discussion. The symmetric equilibrium & is stable
in the left panel. In the right panel, & is unstable and two additional stable spatial
equilibria arise, each exhibiting endogenous agglomeration, in which one region becomes
larger despite the perfect symmetry of the regional fundamentals.

We can formalize the above discussion by a simple stability criterion.

Lemma 1. Given a differentiable v, define the utility gain for marginal movers by

_r (avl(w) B 802(:1:))

g 0 oxq oxq

oA(x)
8x1

&
Il
S| =

, (4)

=T

where ¥ = 3 and 0 = v1(Z) = v2(Z) > 0. Then, the symmetric equilibrium Z is stable
if w < 0, and unstable if w > 0. [ |

4 All omitted proofs are in Appendix A.



In Eq. (4), normalization by % /7 only simplifies the final expression of w.

In the Beckmann model, we compute

w=—B+0a0, where O = 1;—2 € (0,1). 5)
The negative term —p represents the dispersion force, while the positive term a®
represents the agglomeration force. The sign of w, and hence the stability of &, depends
on which force dominates: & is stable if f > a®, and unstable if § < a®.

In Eq. (5), the dispersion force does not depend on ¢ because it is not affected by
interregional transport conditions. By contrast, the agglomeration force depends on ¢
as it incorporates interregional interactions. In particular, ® decreases as ¢ increases.
That is, the benefit of becoming close to others is small if transport is less costly.’

Importantly, © itself is the proximity gain for marginal movers at each ¢. To see this,
seta = 1and B = 0. Then, v;(z) = }; ¢;;x; corresponds to a parsimonious measure of
proximity. Since w = O in this case, ® indeed represents the proximity gain.

With Eq. (5), we can determine the stability of & in the Beckmann model. If § > «,
congestion force is so strong that w < 0 for all ¢ € (0,1). Agglomeration cannot occur,
as ¢ is always stable. If 0 < B < a, the level of ¢ matters. As Fig. 3 illustrates, & is

stable if ¢ is large (i.e., if the agglomeration force is small), and unstable otherwise.

Gain functions. Beyond the Beckmann model, the utility gain w in Lemma 1 is well

defined for any differentiable v. In many spatial models, w is a simple function of ©,
w = 0(0), (6)

as in the Beckmann model. For each model, we call this Q) the gain function of the
model. The positive terms of () represent the model’s agglomeration forces, whereas
the negative terms represent the dispersion forces. How each term of () responds
to changes in © then describes how transport conditions alter the strengths of these

forces, and therefore their relative importance at each transport cost level.®

2.2 The Braid model: A “global” dispersion force

Toillustrate what gain functions () look like under different specifications of the indirect

utility function v, we employ another reduced-form model. Consider replacing the

°If instead the regions are in autarky (¢ = 0), the agglomeration force reduces to local spillovers a la
Henderson (1974). Since ©® = 1 and a® = g, the stability condition is whether # < f or not.

®Generalization is possible for the cases where the proximity gain is multi-dimensional such as
0 € [0,1]M where M is the number of different interregional interactions. For clarity, we restrict our
attention to the case M = 1 throughout this study.



local congestion term in the Beckmann model as follows:
o
vi(x) = yi(x) (2%‘%’) : (7)
J

Here, y;(x) is the income of an agent in the region i. Each region is endowed with
one unit of fixed expenditure, which is allocated to all agents according to accessibility.
Suppose that the share received by an agent in region i from region m is given by’

sinl®) = = Pim ®)

L X1t
Then, yi(z) = ¥ Sijm(x). We refer to the model (7) as the Braid model after Braid
(1988) who studied the case a = 0.

In this model, proximity to others has a negative impact on the utility of agents, as
Eq. (8) embeds competition between agents in different regions over spatially dispersed

expenditure. Concretely, for any combination of i,j,m € {1,2},

ox; Y X Y X1Pim fim

demonstrating that a marginal increase in agents in any region j € {1,2} has negative
impacts on s;,,. This is simply because it increases the denominator of s;|,,. Whether
income y; = ) ;s;); as a whole increases or not after a migration shock depends on the
relative magnitudes of these impacts. Specifically, analogous to the utility gain w, we

can compute the income gain of a marginal mover from region 2 to 1:3

(3y1(w) _ ayz(w))

1447 20 (1-¢)*
o, o, - T — %<0, (10)

v 402 A2 (1t9P

| =

where 7 = y1(&) = y2(&) = 1/x. This shows that a marginal migration shock always
induces an income loss for the movers. This force is on the second order of ©, reflecting
that the proximity matrix [¢;;] appears twice in the numerator of Eq. (9).

From Egs. (4) and (10), the utility gain for the Braid model is given as follows:
w =00 — O (11)

The gain function for the model is therefore Q(®) = a® — ®2. The first term is the same

"Note that the total expenditure of the region m is equal to one: Y ;.7 xiSij; = 1. Possible microfoun-
dations for this toy model are abstracted away for brevity.

) 14+¢? E) 2
SFrom Eq. 9), 5&t = —(s11)* — (512)* = — =1 £ and 2 = —Sp|1 " S1)1 — S22 " S12 = _ijr
1 (1+¢) 1 (1+¢)

8



agglomeration force as in the Beckmann model. The second term, —0?, represents the
“global” dispersion force due to the income loss in Eq. (10).

This dispersion force weakens as © falls (i.e., as ¢ increases). If ¢ is very small,
regions are effectively in autarky and y; ~ s;; = 1/x;. In this case, a migration
shock that raises x; directly intensifies local competition and lowers income, creating a
strong incentive to disperse (—@? ~ —1). By contrast, if ¢ is close to one, regions face
nearly identical crowding conditions (y; ~ 1), and migration shocks have little effect
on income (—©®? ~ 0).

In the model, & can become unstable for some ¢ whenever « > 0. If 0 < a < 1, & is
stable for high transport costs (large ® < small ¢) and unstable for low transport costs
(small © < large ¢). If & > 1, & is unstable for all ¢.

Contrasting implications of transportation costs. The two reduced-form models
yield fundamentally opposing implications. In the Beckmann model, & is stable for
low transport costs (large ¢), and agglomeration occurs for high transport costs (small
¢). The Braid model exhibits the opposite behavior. Figures 4A and 4B confirm this by
showing the full equilibrium paths on the ¢-axis. The contrast persists in the presence
of asymmetries. For instance, if region 1 possesses an exogenous advantage as in
Figs. 4C and 4D, a symmetric configuration is no longer an equilibrium. Nevertheless,
the qualitative findings remain consistent with the symmetric case: an increase in
¢ (declining transport costs) fosters dispersion in the Beckmann model but drives
agglomeration in the Braid model.

This divergence is rooted in the different spatial scales of dispersion forces. In
the Beckmann model, dispersion under high ¢ is driven by the relative weakening of
the agglomeration force, whereas the “local” dispersion force remains invariant to ¢.
In the Braid model, endogenous agglomeration occurs due to the relative decline of
the “global” dispersion force as ¢ increases. Thus, the spatial scale of the dominant
dispersion force can alter the implications of declining transport costs.” As noted in
the introduction and further discussed in Section 3, in many-region settings, these two

types of dispersion forces lead to contrasting spatial patterns.

2.3 Benefit matrix and the spatial scale of economic forces

While the insights from the stylized models considered so far are intuitive and nearly

immediate, they rely on a reduced-form structure. In more comprehensive frame-

9In fact, the literature on two-region models has recognized that various dispersion mechanisms
can have opposing effects. For example, Fujita and Thisse (2013, Ch.8) compares the seminal models
by Krugman (1991) and Helpman (1998) and noted that “Krugman’s scenario is reversed” (p.289) in
Helpman-type frameworks with urban costs.
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Figure 4: Equilibrium values of x; in the Beckmann model and the Braid model

Note: We set « = 1/2 for both models, and p = 1/6 for the Beckmann model. In Panels (A) and (B),
the black markers indicate the points where the symmetry becomes unstable. In Panels (C) and (D), we
multiply v1 () by 1.05. The black markers indicate the points at which stable and unstable equilibrium
curves converge. For reference, the equilibria for the symmetric cases are shown in light gray.

works, particularly general equilibrium models where wages, prices, and land rents
are endogenously determined, the impact of transport costs becomes considerably
more complex. In such settings, multiple forces interact simultaneously, making it
difficult to isolate whether “local” or “global” dispersion dominates.

To bridge the gap between our stylized insights and richer general equilibrium
specifications, it is necessary to develop a formal method for evaluating how these en-
dogenous forces respond to changes in transport costs. For this purpose, we introduce
an analytical tool termed the benefit matrix. This matrix allows us to systematically
decompose the spatial externalities inherent in spatial models and classify them into

the local and global forces in our earlier discussion.

Definition 1 (Benefit matrix). For a differentiable indirect utility function v, its benefit

matrix V is its elasticity matrix at symmetric equilibrium V = %[g—z; (:E)],-:Lz,.j:l,z.
Then, the utility gain w in the symmetric equilibrium & is the eigenvalue of the

benefit matrix V, associated with the eigenvector z = (1, —1). Intuitively, z represents

the direction of possible migration shocks because (¥ +¢€,%¥ —€) = & + €z.

10



Example 1. Consider the Beckmann model. Its benefit matrix is
V = —pI+aD, (12)

where I is the identity matrix and D is the row-normalized proximity matrix:

1 ¢
] J. (13)

1
1+¢

We confirm Dz = i—iz = @z. Thatis, z = (1,—1) is an eigenvector of D, and the
proximity gain © is the associated eigenvalue. Then, Vz = (- + a®)z = wz from

Eq. (12), showing that w is indeed an eigenvalue of V corresponding to z. u

Example 2. The benefit matrix for the Braid model is
V =aD — D?, (14)

Since Vz = (a® — @?)z, w = a® — O? is the eigenvalue of V associated with z. W

Examples 1 and 2 illustrate that the gain function Q) introduced earlier (Eq. (6))
arises from the structure of V. The utility gain takes the form w = Q(©) because
the benefit matrix itself can be written in parallel form V = ()(D). Here, the matrix
function is interpreted in a straightforward way, e.g., matrix polynomials. We can thus
think of V.= (D) and w = Q(©) interchangeably.

In the two reduced-form examples, the gain function Q)(®) allows us to formally
distinguish the spatial scale of the economic forces. A negative constant term in
the gain function )(©®) corresponds to a local dispersion force. In contrast, negative
non-constant terms correspond to global dispersion forces. The spatial scale for ag-
glomeration forces can be similarly defined: positive constants are local agglomeration

forces, and negative non-constant terms are global agglomeration forces.

24 General equilibrium models

We now examine specific models in the literature to illustrate that their benefit matrices
V are simple functions of D. We can then immediately obtain the associated gain
functions and systematically determine the spatial scale of the dispersion forces in

each model. Detailed derivations are provided in Online Appendix F.

The Helpman (1998) / Redding and Sturm (2008) model. Helpman considered an im-

perfectly competitive framework in which agents consume both differentiated tradable

11



goods and local non-tradable goods (i.e., housing). We consider its variant by Redding

and Sturm. The indirect utility of mobile workers in this model is
(o) — () 7T
vi(x) = X, w; - CMA/™, (15)

where y € (0,1) is consumers’ expenditure share on tradablesand 1 — u € (0, 1) is that
on non-tradables, o > 1 is the elasticity of substitution of horizontally differentiated
tradable varieties, w; is the nominal wage in region i, and CMA; = } ic7 x]-w}_”gbﬁ is
the so-called “consumer market access.” The proximity matrix is ¢;; = T%_", where
T;; > 1 is the iceberg trade cost from region i to j. Given z, the wage w = (w;) is
endogenously determined in general equilibrium with interregional trade.

The benefit matrix for this model can be computed as follows:
V=C(D) (—(1-u)l+cD), (16)

where C(D) = (1+ Z!D) “and ¢ = Lo+ L — (1 — )21, This then implies

7
w=C(0) (~(1-4)+c0) (17)

where C(@) = (14 Z1@)~! > 0. Since C(®) > 0, the sign of w hinges on the sign of
W= —(1—p) 410, (18)

which is similar to the Beckmann model. In particular, —(1 — y) corresponds to the
local dispersion force due to crowding in the non-tradables market in each region. If u
is sufficiently large, then agents’ love for variety produces a strong global agglomeration
force: we have ¢; > 0 and hence ¢;® > 0 if u > (%1)2, where we note 1 € (0,1).
If further p > -1, Z is unstable for high transport costs (large ®) and stable for low
transport costs (small ®), just as in the Beckmann model.

We provide a slightly detailed derivation behind the final expressions (16) and (17)
for illustration. The definition of v in Eq. (15) yields

V=—(1—y)1+yw+a%(D—(a—1)DW). (19)

The first term in Eq. (19) represents the crowding in the housing markets. The second

is the direct impact of nominal income on indirect utility, where

W=-C(D)-D (20)

12



is the elasticity matrix of nominal wages.10 The third term in Eq. (19) is the “cost-of-

living” effects: the price index in a region falls when nearby regions offer a greater

variety of goods but increases when they pay higher wages and thus charge higher

prices (see, e.g., Fujita and Thisse, 2013; Baldwin et al., 2003; Brakman et al., 2019).
Substituting Eq. (20) into Eq. (19) and rearranging, we obtain

V= —(1—y)I+%D+§(I—D)‘C(D)~D and hence 1)
w=0(0)=-(1-p + L0+ Lc@E)n-0p0. 22)
<0 SN—— A o
>0 >0

The first two terms represent the partial equilibrium utility gains where wage adjust-
ments are ignored. The third term in Eq. (22) summarizes the net impact of wages
on indirect utility in general equilibrium, both through the (positive) individual-level
income gain and the (negative) cost-of-living effect. It is a net global agglomeration
force because it is strictly positive for all ® € (0,1). Thus, the only dispersion force
that can stabilize & is the local dispersion force captured by the first term of Eq. (22).
Further rearrangement of Egs. (21) and (22) yields the final expressions (16) and (17).
By construction, w in Eq. (18) captures the net utility gain considering all endogenous

forces and their general equilibrium trade-offs. For example, despite there is no net

global dispersion force, w? = —(1 — ) + ¢1® has a negative term involving ©:
U U c—1
—fo+ L 0-(1- 23
c1® U®+U_1®\( W— ®, (23)
<0

This last term represents how the local dispersion force —(1 — y) counteract, in each
agent’s migration incentives, the core agglomeration forces in the model, such as the

love for variety and demand linkage (the first two terms of Eq. (23)).

The Allen and Arkolakis (2014) model. The model is a perfectly competitive frame-
work with both positive and negative externalities. Appendix F.2.4 shows that the

benefit matrix for the Allen—-Arkolakis model is
V =C(D) (¢l +c1D), (24)

where C(D) = ((¢1+ (¢ —1)D)(I-D)) Lo =a —p— 2% and ¢) = a — p+ £,

The parameters & > 0 and B > 0 are the magnitudes of local agglomeration and

w

Concretely, W = Z[%(f)]izl,z;j:m with @ = w;(z) = wp(z). As C(D) = (I+ %1D) ~! plays
a role analogous to the Leontief inverse in input-output analysis, W captures the general equilibrium
response of wages to marginal migration shocks taking into account interregional trade.
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congestion effects with respect to local population, respectively, and ¢ > 1 is the
elasticity of substitution across regionally differentiated goods. The gain function () is
obtained accordingly. Analogous to the Helpman model, the sign of w depends on a
linear expression w* = ¢y + 1@ that captures the net migration incentive for agents.
If the dispersion force is relatively strong (relatively large p), we have ¢y < O,
indicating a net local dispersion force. Likewise, if the agglomeration force is relatively
strong (relatively large «), we have c¢; > 0, indicating a net global agglomeration force.
In particular, if p < a < & = /30 +1 ,

(small ¢) and dispersion occurs if transport costs are low (large ¢). Under the presence

agglomeration occurs if transport costs are high

of externalities, the only stabilizing force in the Allen—Arkolakis model is the local
crowding effect.!’ That is, as discussed in Allen and Arkolakis (2014), this model bears

a structural similarity to the Helpman model.

The Krugman (1991) model. Krugman’s seminal model emphasizes the role of market
crowding. In this model, there is always a nonzero demand for the manufacturing
goods in each region due to the presence of immobile consumers. This discourages
concentration of production in one region if transport costs are high, and this produces
a global dispersion force as in the Braid model. For this model, the benefit matrix is

v-w+_to(D-(-1)DW) (25)

where the elasticity matrix for the nominal wage is
w=lcm). (yD - DZ) where C(D) = (1—“p— 7= 1p2 B (26)
o ’ N o o '

Compared to Eq. (19), the local dispersion force is absent. Compared with Egs. (20)
and (26), the Krugman model has a negative term —D?, while the Helpman model

does not. We can rearrange V to see

V =C(D)- (ch - c2D2> . 27)

Q=

where i = 5+ L > 0and ¢, = (7”7214—
C(O) - (10 — c,0%) with C(®) = (1 — L@ — Z1@?%) ! > 0, where the core trade-off is
captured by w? = ¢;@ — c,@. The first term ¢;® > 0 represents global agglomeration

> 0. The gain function is then w =

forces, and the second term —c,®? < 0 captures global dispersion forces augmented

Hn the perfectly competitive case (x = 0 and B = 0), the model reduces to the Armington (1969)
framework. For this case, w = 1C(®)(—1+ @) < 0, and the net agglomeration term (—1 + ®) does not
contain any negative components in ®. Nonetheless, w is a negative function and can be interpreted as
the underlying “global dispersion force” inherent to general equilibrium in the Armington framework.

14



by immobile demands. As in the Braid model, dispersion is preferred if transport costs

are high (small ¢), and agglomeration occurs otherwise (large ¢).

The Tabuchi (1998) model. Tabuchi integrated urban costs into Krugman’s framework
with immobile consumers. In addition to the regional-scale component of Krugman,
each region has an Alonso-Muth-Mills monocentric city structure. Within each region,
agents commute to a central business district and face the trade-off between commuting

costs and land rent. The benefit matrix for the Tabuchi model reduces to
V =C(D)- <—COI +oD - c2D2> , (28)

where C(D) is a matrix factor that captures general equilibrium effects, and ¢y =
ve1 > 0, c1 = % + g > 0,and ¢, = 0“—_2162 + (1763. Here, vy is the share of housing
expenditures, and €1, €2, €3 capture the effects of urban costs. For example, the larger
the commuting cost parameter and/or the opportunity cost of the land, the larger
€1 > 0becomes, so that the local dispersion force —cy becomes more pronounced. The
stability of & depends on the quadratic expression w® = —co + ;@ — c;@2.

The agglomeration force (c;® > 0) is the same as the Krugman model, while —cy <
0 captures the local dispersion force due to urban costs. The term c,®? captures net
global forces that include the impacts of urban costs through general equilibrium. The
model features both local and global dispersion forces, and the symmetric equilibrium

can be stable for both high and low levels of transport costs.

Idiosyncratic taste shocks. Idiosyncratic preference shocks (McFadden, 1974, 1978a,b)
are important both in the quantitative and theoretical literature (Hunt and Simmonds,
1993; Waddell, 2002; Anas and Liu, 2007; Redding and Rossi-Hansberg, 2017; Anderson
et al., 1992; Tabuchi and Thisse, 2002; Murata, 2003). Regarding taste shocks, Behrens
and Murata (2021) demonstrated that the spatial equilibrium condition in models
with idiosyncratic shocks can be equivalently represented by that in homogeneous
preference models with local non-tradables markets as in Helpman (1998). Thus, from
the perspective of stabilizing forces at &, introducing idiosyncratic shocks into a model
with homogeneous preference is equivalent to adding a negative constant to the utility
gain w, i.e., to embedding an additional local dispersion force. Welfare implications
are, however, different and care should be taken (Behrens and Murata, 2021).

2.5 The three model classes
As the above examples illustrate, for a wide class of spatial models,

V =C(D) - (col + ¢1D + cD?), and hence (29)
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Figure 5: Representative forms of the quadratic component of the utility gain

Note: For selected examples from the three model types, the “net” utility gain is plotted as a function
of the proximity gain ®. Larger ® corresponds to smaller ¢. In each panel, & is stable for ® such that
the curve lies below the horizontal axis. The parameter values are chosen such that the stability of &
depends on ®. Local dispersion forces stabilize & for small ©, and global dispersion forces for large ©.

w=C(®)- (co+c10 +c,0?), (30)

where C and the coefficients {cg, c1,c2} are model dependent. In this representation,
the stability of & is governed by the quadratic term, since the sign of w is entirely
determined by the sign of ¢y + ¢1® + c,@.

For models of this form, we can define three prototypical classes according to
the transport cost conditions under which the symmetric equilibrium is stable: low
transport costs (small © or large ¢), high transport costs (large ® or small ¢), or both.
For convenience, we refer to the three model classes as Type L, Type G, and Type LG,
where L and G stand for “local” and “global,” respectively.'?

With {cx } being model-dependent constants, we can summarize as follows:

* Type L emphasizes local dispersion forces as the dominant dispersion mecha-
nism. The symmetric equilibrium is stable if transport costs are low, and unstable
if transport costs are high. V. = C(D) - (¢oI 4+ ¢1D) with ¢y < 0 indicating the

local dispersion force.

* Type G emphasizes global dispersion forces as the dominant dispersion mecha-
nism. The symmetric equilibrium is stable if transport costs are high, and unstable
if transport costs are low. V = C(D) - (¢1D + ¢;D?), with c; < 0 representing the

global dispersion force.

¢ Type LG has both local and global dispersion forces as the dominant dispersion
mechanisms. V = C(D) - (coI + ¢;D + c;D?), where ¢y, ¢z < 0 and ¢; > 0. The

symmetric equilibrium is stable for both high and low transport cost levels.

12See Appendix A.3 for formal definitions. Here, we restrict our attention to cases in which the
agglomeration forces are neither too weak nor too strong, so that the symmetric equilibrium is stable
88 g y q
for some values of ¢ and unstable for others.
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Model Dominant

Class Stability of 2 dispersion force Examples

Beckmann (1976)
Helpman (1998)
Low Local Murata and Thisse (2005)
transport costs Redding and Sturm (2008)
Allen and Arkolakis (2014)
Redding and Rossi-Hansberg (2017), Section 3

Type L

Harris and Wilson (1978)
Krugman (1991)

High Global Krugman and Venables (1995)
transport costs Puga (1999), Section 3
Forslid and Ottaviano (2003)
Pfliiger (2004)

Type G

Tabuchi (1998)

Fujita et al. (1999a), Section 14.4
High and low Both Puga (1999), Section 4
transport costs local and global | Pfliiger and Siidekum (2008)
Pfliiger and Tabuchi (2010)
Kucheryavyy et al. (2024)

Type LG

Table 1: Notable examples

Note: The section numbers in the table correspond to those in the referenced papers. For Krugman and
Venables (1995) and Puga (1999), the spatial distribution of interest is the share of manufacturing sector.
In all the models in the table, the stability of & hinges on the sign of a quadratic function of the form
co + 10 + c,@?% with model-dependent coefficients {co, c1, ¢z}

Figure 5 illustrates the typical shapes of the quadratic term cp + ¢1© + 20?2 in each
class, and Table 1 lists representative examples.

The model-dependent coefficients ¢y, c1, c2 are functions of the model’s structural
parameters, with transport costs entering only through D. The constant ¢y captures
the forces operating within regions and therefore represents the local component. The
coefficients c; and c; represent the forces that operate across regions. The first-order
term c; reflects direct interregional effects, such as agglomeration spillovers in the
Beckmann model. The quadratic term ¢, captures higher-order spillovers.'?

Each coefficient c¢; in the co,c1,cp representation captures the composite general
equilibrium effect associated with the corresponding order of D. Its sign therefore
reflects the net contribution to w in the order of ®. For example, if there are both
local agglomeration economies and diseconomies, the sign of ¢y reveals which force

dominates: ¢y > 0 indicates net agglomeration, while ¢y < 0 indicates net dispersion.

_ 1+

In the Allen-Arkolakis framework, for example, one obtains ¢p = a —  — =%, and

13In many-region settings, c, reflects indirect interactions mediated by third regions. For example,
in models with interregional trade, agents in the region i are affected by the population of the region j
because agents in the region i compete with those in the region j for income generated in other regions
k = 1,2,.... Such effects typically arise second order in transport frictions, as they depend on the
transport costs between regions i and k, as well as between regions j and k.
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Figure 6: N-region symmetric circle.

« < B is a sufficient condition for the net local effect ¢ to be negative.

3 Many regions

This section examines how the proposed taxonomy of spatial models maps to the
endogenous spatial patterns and their comparative statics in an N-region economy. All
variables and functions (e.g., , v, [4)1-]-], D) are straightforwardly extended. The set of
regions is now denoted by Z = {1,2,...,N}.

We focus on a stylized geography in which homogeneous regions are symmetrically

placed over a circle and transport is possible only along the circumference (Fig. 6).

Assumption C. The proximity matrix is given by ¢;; = ¢"i, where ¢ € (0,1) is the ease
of transport between two consecutive regions, and £;; = min{|i — j|, N — |i — j|} is the
distance between regions i and j over the circumference. All regions are symmetric
regarding their local fundamentals (e.g., innate amenity or productivity). In addition,

N is a multiple of four.'* u

This abstracts away the advantages from each region’s unique geographic position:
every region has the same level of geographic accessibility in a circle. Combined
with the perfect symmetry in other regional fundamentals, the symmetric distribution

& = (%, 5, ..., 1) is always a spatial equilibrium (Lemma 3 in Appendix A.3).

3.1 The stability of the symmetric equilibrium

Endogenous agglomeration occurs when the symmetric equilibrium & is unstable, that
is, when it does not withstand small migration shocks. In an economy with N regions,

such shocks can be represented as
T+ez=(X+e€z,¥+e€zy,..., X+ezN) (31)

where € is a sufficiently small scalar. The vector z = (z;);c7 is a deviation pattern: z; > 0

indicates an inflow into region i and z; < 0 an outflow. Since the total population is

4This restriction on N is only for expositional simplicity. See Remark 3 in Appendix A.
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fixed, we require ) ;.7 z; = 0. The N-region setting admits a substantially richer set of
deviation patterns than the two-region case, because (X + €, ¥ — ¢€) is the only possible
perturbation in the two-region setting. Below, we normalize ||z|| = 1.

Analogous to the two-region case, the expected utility gains for marginal movers

under migration shocks is closely related to the benefit matrix V = [g—z; (@)] ieT,jeT
Lemma 2. For any deviation pattern z with } ;c7z; = 0 and ||z|| = 1, the expected
utility gain of marginal movers is w(z) = 2z Vz, where T denotes transpose. u

Then, the value w(z) characterizes the stability of &. If w(z) < 0 for all possible
deviation patterns, then any migration shock reduces the utility of the movers and &
is locally stable. If w(z) > 0 for some z, the movers benefit from relocating according
to that pattern, implying instability. Thus, stability is determined by whether the
maximal attainable gain w* = max, w(z) is positive or negative.

To characterize w*, let {wy } denote the eigenvalues of V, and { z; } be their associated

eigenvectors. Because w(zy) = 2z Vzp = wyz) 2z = w2 ||* = wy, we observe
w' = max{ay}, (32)

implying that the largest eigenvalue of V determines the stability of #.'°

How can we obtain {wy}? Under Assumption C, for all models in Table 1, the
benefit matrix satisfies V.= (D), where the row-normalized proximity matrix D is
replaced by its N x N counterpart. For each model, the base gain function Q)(©) is the
same as in the case of two-regions.!® Then, V and D share the same set of eigenvectors
{21}, and V = Q(D) implies

wp = Q(O), (33)

where Oy is the eigenvalue of D corresponding to zj. Each © is a function of ¢ because
¢ is the only parameter of D according to our assumptions.
These observations yield a transparent approach to stability analysis, as the follow-

ing example illustrates.

Example 3. In the Beckmann model, we again have V = —BI + aD, where I and D are

15The discussion here is closely related to Allen et al. (2024). In their framework, the spectral radius
of a matrix that collects key model elasticities governs the uniqueness of the equilibrium. In our setting,
their uniqueness condition [Theorem 1(a)] broadly corresponds to a sufficient condition for the stability
of & for all ¢, which rules out endogenous agglomeration. Our focus instead lies on environments
with multiple equilibria [cf. their Theorem 1(c)], and we take a step toward understanding how the
underlying network structure shapes the positive properties of these equilibria.

16This is simply because, for all models we saw in Section 2.4, the gain functions are derived for the
general number of locations under Assumption C, and then specialized to the N = 2 case.
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replaced by the N-region identity and row-normalized proximity matrices.!” The kth
eigenvalue of V is then wy = —pB + a® because Dz, = Oz, implies Vzy = (—f +
a®y)zx. The stability of & is determined by the sign of w* = maxy{wy}. Consider a
value of ¢ such that & is stable, i.e., wy < 0 for all k and hence w* = maxg{w;} < 0.
Suppose then that ¢ increases or decreases monotonically. Suppose some wy,. changes
its sign from negative to positive at some ¢*. Then, after that point, deviation towards
the zy+-direction improves the utility of the movers, and & becomes unstable. In this

sense, the corresponding eigenvector zj+ represents the critical deviation pattern. M

3.2 Proximity gains and deviation patterns

The eigenvalues {©y} of D have a clear interpretation analogous to the proximity gain
O in the two-region case. Again, for the special case of the Beckmann model with 8 = 0
and « = 1, the indirect utility function boils down to a simple proximity measure. We

have V = D and wy = Oy, which can be interpreted as follows.

Observation 1. Each eigenvalue ©; of D measures the proximity gain experienced by

marginal movers when migration shocks occur in the corresponding direction, z;. M

For example, if N = 4, the normalized proximity matrix under Assumption C is

1 L ¢ ¢ 9
_ ¢ 1 ¢ ¢
Tirr @ | 9o 1 9| Y
¢ ¢ ¢ 1
There are two relevant eigenvalues:
_1-¢ _(1-¢\?
@1—1+¢ and ©, = <1+¢> . (35)

We can check that there are two eigenvectors associated with ©, namely z;" =
(1,0,—1,0) and 2; = (0,1,0,—1). Both represent monocentric spatial patterns. For
example, in & + €z; = (%,% 4 €,%,% — €), one region grows at the expense of another
that is two steps away, creating a single center of attraction. For ®;, the associated
eigenvector is zp = (1, —1,1, —1), and represents a polycentric agglomeration pattern
T+ezy = (F+ex—¢€x+¢ex—€). Two regions located two steps apart grow
symmetrically, while the two intermediate regions shrink.

There are three intuitive properties about ®; and ®;. First, both are positive. Any

deviation from the full dispersion induces some form of agglomeration, and for movers

7Observe that Eq. (2) is defined for general N.
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Figure 7: Examples of spatial patterns generated by z; (N = 16).

this increases the proximity to others. Second, each ® decreases as ¢ increases. The
proximity gain decreases if transport costs are less important. Third, ©®; > ©; at any
value of ¢. Naturally, from the perspective of movers, deviation toward a monocentric
pattern induces a greater proximity gain than toward a polycentric pattern.

These properties generalize to the N-region case.!® All {@;} are positive and
decrease in ¢. Each z; corresponds to a deviation pattern with k symmetric peaks as
illustrated in Fig. 7. Most importantly, the maximum and minimum proximity gains

are unambiguously determined: for each ¢,
ml?X O, =0; and mkin O = ®%. (36)

Intuitively, at any value of ¢, the monocentric agglomeration pattern (k = 1, Fig. 7A)
yields the largest proximity gain for the movers. The proximity gain is the smallest if

the movers agglomerates in every other region (k = &, Fig. 7D).

3.3 Contrasting implications for spatial patterns

The relationship (36) has important implications for endogenous spatial patterns. This
is because the maximum eigenvalue of D is critical if the model incorporates only local
dispersion forces. For instance, since wy = —f + Oy in the Beckmann model, we see

«

p

Figure 8A illustrates this for the N = 8 case, where we draw curves of wy as a function of

w* <0 <« ml?x{—ﬁ+a®k}:—[3+ocmkax{®k}<0 & 01< (37)

¢. The symmetric equilibrium is stable if @, is sufficiently small, i.e., if ¢ is sufficiently
large. If ¢ monotonically decreases from a high level and crosses ¢*, then & becomes
unstable at ¢* because a deviation of the form & + €z induces a positive utility gain
for the movers. Monocentric agglomeration should form at such a point.

By contrast, if the model has only global dispersion forces, the minimum eigenvalue

18 Akamatsu et al. (2012), Lemma 4.2, provides the analytical formulae for {®;} and {z; }, while the
interpretation of {©y} as proximity gains is newly given in the present study. Lemma 5 in Appendix A
reproduces the relevant part of the aforementioned lemma, adapted to our context.
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(A) The Beckmann model (Type L) (B) The Braid model (Type G)

Figure 8: Curves of wy = Q(©y) for the two minimal models (N = 8,k = 1,2,3,4).

Note: The symmetric equilibrium is stable if all curves {wy}}_, stay below the horizontal axis (gray
region). It becomes unstable at ¢* where the largest eigenvalue cuts the axis. In the Beckmann model,
wy is the first to cross the axis, whereas in the Braid model, it is wy.

of D is critical. In the Braid model, w; = a®; — @% = O (a0 — ©f), which implies that
w' <0 <« ml?x{zx—@k}:zx—rr}{in{@k}<0 & a<Oy. (38)

Figure 8B illustrates this for the N = 8 case. The symmetric equilibrium is stable if @ N
is sufficiently large, that s, if ¢ is sufficiently small. If ¢ gradually increases from a very
small value, at ¢*, the %-centric deviation pattern z N becomes attractive for movers.
The two minimal examples show that the spatial pattern emerging at the onset
of instability is critically dependent on the spatial scale of the dispersion force in the
model. In particular, polycentric patterns arise only when the dispersion force operates
at a global scale. This insight from the reduced-form models can be extended to cover

general equilibrium models discussed in Section 2.4:
Proposition 1. Suppose Assumption C.

(a) Consider a model of Type L or LG with local dispersion forces. Then, the sym-
metric equilibrium & is stable for large ¢. Suppose that the model parameters are
set so that & is stable for all ¢ > ¢* with some threshold value ¢* € (0,1), and
becomes unstable at ¢, i.e.,  is unstable for ¢ slightly smaller than ¢*. Then, a

single-peaked monocentric spatial equilibrium path branches from & at ¢*.

(b) Consider a model of Type G or LG with global dispersion forces. Then, & can be
stable for small ¢. Suppose that the model parameters are set so that & is stable
for all ¢ < ¢* with some threshold value ¢* € (0,1), and becomes unstable at
¢*, i.e., T is unstable for ¢ slightly larger than ¢*. Then, a polycentric spatial

equilibrium path with % symmetric peaks branches from & at ¢*.

Proposition 1 considers settings in which multiple equilibria may arise, while &

remains stable for some values of ¢. This condition need not always hold. For exam-
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ple, in a Type L model with sufficiently strong local dispersion forces, & is stable for
all ¢ € (0,1), and the threshold ¢* in Proposition 1 (b) does not exist. In such cases,
the equilibrium is typically unique, a convenient feature that makes unambiguous
counterfactual analysis feasible in quantitative spatial models. Equilibrium unique-
ness implies that, absent exogenous geographical asymmetries, & is the only possible
outcome. At the opposite extreme, in Type G models with sufficiently strong agglom-
eration forces, & can be unstable for all ¢, leading all agents to concentrate in a single

location. Proposition 1 deliberately excludes both of these extremal cases.

3.4 Evolution of spatial patterns

Because Proposition 1 relies on a local stability analysis around &, it does not establish
whether an instability toward polycentric deviations actually leads to stable polycentric
equilibria. To trace how stable spatial equilibria evolve as transport costs change
beyond Proposition 1, one must specify an indirect utility function, and the resulting
characterizations are therefore model dependent.'”

Nonetheless, in specific models, we can show that polycentric spatial patterns
become stable only when global dispersion forces are sufficiently strong, consistent

with Proposition 1. This is illustrated by the following formal results and Fig. 9.

Proposition 2. Consider the Type L model of Helpman (1998) on a symmetric four-
region circle. Suppose that the full dispersion & = (}1, %, }L, %) is stable for large ¢, but
that multiple equilibria may exist. Then there exists a threshold ¢* € (0,1) such that
& is unstable for all ¢ € (0, ¢*). For this range, any duocentric equilibrium of the form
(my, my, my, my) with my > my, if it exists, is also unstable, implying that all stable
equilibria must be single-peaked. For ¢ € (¢*, 1), the fully dispersed allocation & is

stable, and a single-peaked equilibrium path connects to & at ¢* [cf. Proposition 1 (a)].

Proposition 3. Consider the Type G model by Forslid and Ottaviano (2003) on a four-
region symmetric circle. Assume that the full dispersion & = (}I, zly %l, }1) is stable for
small ¢. Suppose that the initial state is &, and ¢ increases monotonically from 0. At
some threshold ¢*, £ becomes unstable, and duocentric spatial equilibrium of the form
(my, my, my, my) with mq > my branches from & [cf. Proposition 1 (b)]. In particular,
the new stable equilibrium is the duocentric agglomeration such as (%, 0, %, 0). Atsome
¢** > ¢*, the duocentric equilibrium becomes unstable. Finally, the full agglomeration

in a single region such as (1,0,0,0) becomes the stable spatial equilibrium for large ¢.

For example, Kucheryavyy et al. (2024) focused on a specific but flexible two-region model that
encompasses Allen and Arkolakis (2014) and Krugman (1991) as special cases. They essentially showed
that the agricultural sector a la Krugman (1991) produces a global dispersion force that stabilizes the
symmetric equilibrium at high transport costs, which is consistent with our results.
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Figure 9: Numerical illustration of Propositions 2 and 3.

Proof of Propositions 2 and 3. See Akamatsu et al. (2016). O

In Fig. 9, the schematic diagrams above show the corresponding spatial patterns.
In particular, in the Helpman model, a monocentric distribution of the form = =
(mp, my, my, m3) with my > my > mg is the stable equilibrium for ¢ € (0,¢*). It
converges to the full dispersion at ¢*, which is consistent with Proposition 1 (a).

As a further numerical example, Figure 10 shows the typical evolution of spatial
patterns, assuming N = 16. We consider a monotonic increase in ¢ (i.e., a monotonic
decrease in transport costs), and follow a path of stable spatial equilibria.

Figure 10A considers the Type L model by Helpman (1998). The symmetric equilib-
rium & is unstable if ¢ is small and the agents concentrate around a single peak. As ¢
increases, the monotonic spread of the single-peaked distribution occurs. At a critical
level of ¢, the spatial distribution converges to & [Proposition 1 (a)]. In particular, stable
equilibria are single-peaked throughout the process.

Figure 10B considers the Type G model of Krugman (1991). When ¢ is low, the
symmetric equilibrium is stable. As ¢ increases, an endogenous transition occurs,
and a polycentric equilibrium with eight agglomerations becomes stable [cf. Propo-
sition 1 (b)]. Further increase in ¢ triggers successive instabilities: the number of
agglomerations falls, the spacing between them widens, and each remaining center
grows larger (cf. Proposition 3). As a result, the number of centers in the stable equilib-
rium evolves as 16 — 8 — 4 — 2 — 1. In Type G models, spatial adjustment generates
both winners and losers. Centers that initially grow may later decline as larger ag-
glomerations expand at their expense. For instance, in Fig. 10B, the fifth region from

the left initially gains population as ¢ increases but eventually loses population.
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Figure 10: Stable spatial patterns at different transport cost levels.

Note: The spatial distributions in the circular economy are visualized as if it is on a line segment. In
each figure, the leftmost region is neighboring to the rightmost one under Assumption C.

Figure 10C considers a many-region version of the Type LG model by Pfliiger and
Stidekum (2008). The symmetric equilibrium is stable if ¢ is small. As ¢ increases,
eight-centric agglomerations emerge at some point, as in Type G. Multiple bell-shaped
agglomerations are generated at moderate ¢. Increasing ¢ further causes a decrease
in the number of agglomerations and the spread of each agglomeration. When ¢ is
close to one, the economy becomes monocentric, as in Type L. Notably, in the large
¢ regime, the model exhibits a transformation from a two-peaked to a single-peaked
pattern accompanied by local spreading. This broadly resembles the dual evolution of

cities discussed in Section 1.2°

4 Asymmetries

Real-world geography differs markedly from the stylized benchmarks discussed so far.
Geographic accessibility and other region-fixed attributes can vary between locations,
generating distortions absent in idealized settings. Yet, as a brief exploration in this
section demonstrates, these exogenous asymmetries do not alter the core insights: the
spatial scale of dominant dispersion mechanisms can fundamentally shape the spatial

distribution and their response to transport costs.

20While the real-world dynamics appear to unfold simultaneously, the model generates these changes
somewhat sequentially: first through a reduction in the number of peaks, and then through the flattening
of the remaining agglomeration. This discrepancy may reflect limitations of the model, the most
fundamental issues being the absence of inter-location commuting and dynamic decisions.
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Figure 11: Stable spatial patterns in a square economy (9> = 81 locations).

4.1 Geographic accessibility

Asymmetries can arise solely from the underlying distance structure between regions.
To illustrate this point, Figure 11 considers a square geography with homogeneous
local fundamentals and compares stable equilibria under the Type L and Type G mod-
els. Unlike in a circular economy, some regions are “central” and therefore enjoy an
inherent accessibility advantage. Nonetheless, our theoretical result continues to hold:
the spatial distribution is monocentric under Type L, whereas it is polycentric under
Type G. Moreover, comparative statics with respect to reductions in transport costs are
qualitatively similar to those in Figs. 10A and 10B: under Type L, population spreads
monotonically, while under Type G, agglomeration proceeds through successive con-
centration into fewer locations. See Appendix D for further examples. To obtain
formal results for such asymmetric settings, one approach is to select tractable models
representative of each type and study their implications across alternative network

structures, following the strategy of Matsuyama (2017) in a trade context.
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4.2 Local fundamentals

Other than innate accessibility advantages, region-specific parameters such as exoge-
nous productivity and amenity levels are equally fundamental, especially in quantita-
tive spatial models (QSMs). For example, in the model of Allen and Arkolakis (2014),

indirect utility can be written as

1/(c-1)
0 1
vi(x) = uix; (E w 7 (brxy) (Pk1>

. —~— ‘it
Congestion in amenities

(local dispersion force)

w;, (39)

where {w;} are the nominal wages determined in the market equilibrium given :

Within-region productivity spillover (local agglomeration force)

-0 o
wixi =Y w (bt Uﬁj W;x; VieT, (40)
i rer w7 ()" gy
The key elasticities are« > 0, § > 0, and ¢ > 1. The equilibrium is unique if x — 8 < 0.
In this case, given the observed population vector &, we can uniquely solve for the
region-specific parameters u; and b; that rationalize & as the model’s equilibrium. A
natural question then is how such regional differences affect our results.

To address this question, the circular economy remains useful. Consider the prox-
imity structure as in Assumption C, but allow for variations in region-specific ameni-
ties, which we denote by a = (a;);c7 with a; > 0. When a; = a for all i, we recover
the symmetric racetrack economy of Section 3, for which & is an equilibrium. If we
slightly perturb a froma = (4,4, ...,4a), then & is also slightly perturbed to form a new
equilibrium x(a), which can be seen as a function of a.

To summarize the overall effect of such heterogeneities in a on the spatial distri-
bution, we can use the covariance between each region’s relative advantage and its

deviation in population share from &:

Exogenous regional (dis)advantage

F — -
p=) (a;—a) (xi(a) —%). (41)
i€T —
Endogenous deviation from &
If p = 0, heterogeneity in a does not affect the spatial distribution. We assume p > 0
without loss of generality, as more advantaged regions should attract more population.
Since the mapping x(a) is model dependent, the magnitude of p ata given transport

cost level captures how the model’s endogenous forces translate variation in a into

variation in regional population distribution. Appendix E formally shows that the
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(B) Removal of highways (Type L) (C) Removal of highways (Type LG)

Figure 12: Observed and counterfactual population change rates of Japanese regions.

Note: Figures are based on the simulation data of Sugimoto et al. (2025). Panel (B) reports a many-region
version of the Type L model of Helpman (1998). Panel (C) reports the Type LG model of Sugimoto
et al. (2025), which extends the Helpman framework by incorporating land and intermediate goods as
additional inputs. Although Sugimoto et al. does not assume immobile workers, land as an immobile
factor generates a global dispersion force, as in Pfliiger and Tabuchi (2010).

sensitivity of p to transport costs differs markedly between models, depending on the
spatial scale of the dispersion forces (Propositions 4 and 5).

Specifically, in models with pronounced global dispersion forces, improved inter-
regional access tends to magnify initial local advantages: p increases as the freeness of
transport ¢ increases and the population becomes more concentrated in the regions

favored due to exogenous advantages. By contrast, in models with strong local dis-
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Figure 13: Comparison of model behaviors in Fig. 12

Note: Panel (A): In both models, beyond 90% of log population variation is explained by exogenous
region-fixed fundamentals (a composite of observed land area and unobserved amenities). Panel (B): In
the Helpman model (Type L), growth rates and exogenous fundamentals are positively associated, i.e.,
highway removal induces growths at high-amenity regions, which are, as Panel (A) shows, essentially
more populated regions in 2020. The converse holds true for Sugimoto et al.’s Type LG model as we
observe negative association between exogenous fundamentals and growth rates.

persion forces, the same transport improvement tends to dampen the role of innate
heterogeneity, resulting in a flatter distribution, and p decreases as ¢ increases. These

patterns are consistent with the two-region examples in Figs. 4C and 4D.

4.3 The combination: A quantitative example

In reality, both geographic accessibility and local fundamentals vary between regions.
We briefly discuss Sugimoto et al. (2025)’s results that compare Type L and Type LG over
the Japanese geography. Figure 12 reports the observed and counterfactual population
growth rates. Panel (A) shows actual changes from 2020 to 1970 (i.e., backward in time),
highlighting the shift to major centers such as Tokyo, Osaka, and Nagoya. Panels (B)
and (C) present counterfactual simulations based on calibrated Type L and Type LG
models, respectively. Each model is calibrated to the population distribution observed
in 2020 under the assumption of a unique equilibrium and then used to evaluate the
counterfactual effects of removing the highway network.

There is a notable contrast between the two models. In the Type L model, the
removal of highways leads to further concentration in the core regions (Fig. 12B). This
aligns with the theoretical property of Type L models that higher transport costs induce
greater centralization. Figure 12C shows the opposite pattern: in the Type LG model,

the same shock produces a substantial population shift toward peripheral regions.
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Figure 13B uses the same simulation data as Figs. 12B and 12C to show that, as
transport costs rise, more advantaged regions grow faster in Type L, whereas the
opposite occurs in Type LG. This pattern is consistent with the discussion in Section 4.2.
These qualitative reversals illustrate that the embedded forces can fundamentally shape

the counterfactual implications of spatial models in asymmetric geographies.

4.4 On quantitative spatial models

These results call for research on the role of endogenous economic forces in QSMs. A
central premise of the QSM literature is that it “does not aim to provide a fundamental
explanation for the agglomeration of economic activity, but rather to provide an empir-
ically relevant quantitative model to perform general equilibrium counterfactual policy
exercises” (Redding and Rossi-Hansberg, 2017, p. 23). Building on this premise, QSMs
typically impose equilibrium uniqueness and interpret unexplained interregional vari-
ation (i.e., structural residuals) as innate regional fundamentals. As a result, much of
the observed variation is attributed to structural residuals (cf. Fig. 13A), and endoge-
nous forces play a more limited role than in stylized theories of agglomeration.?!

However, as the Japan example in Section 4.3 illustrates, seemingly innocuous
choices regarding endogenous forces in QSMs can lead to markedly different coun-
terfactual predictions, especially for distributional outcomes across regions. Most
regional QSMs are Type L and rely on local dispersion forces for tractability (Redding,
2025, Fn. 8), which leads them to predict decentralization as transport costs fall.??> This
narrows the range of distributional outcomes such models can generate and, in turn,
constrains the policy conclusions that can be drawn.

Further, some empirical contexts may be at odds with the unique-equilibrium as-
sumption. For large transport projects such as highway systems, winners and losers
may be uncertain ex-ante, making multiple equilibria potentially relevant. Evidence
from the Chinese urban system indicates that urban hierarchies can be based on strong
agglomeration forces or immobile factors (Baum-Snow et al., 2020), both of which can
generate multiple equilibria. The persistence of spatial patterns further indicates that
strong agglomeration forces and path dependence shape long-run regional outcomes
(Lin and Rauch, 2022). A central challenge is therefore to assess whether incorporating
such forces improves the empirical fit and counterfactual performance of QSMs. Re-
latedly, Graham and Horcher (2024) argue that while QSMs hold promise for applied

21For example, in the seminal works of Redding and Sturm (2008) and Allen and Arkolakis (2014),
structural residuals account for 90% and 78% of the logarithmic variation of the city size.

22A subtle point is that the local-global distinction reflects detailed modeling choices rather than
broad economic mechanisms. For example, a “congestion” force can be global if it arises from crowding
of facilities that are accessible across regions with positive transport costs.
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transport policy analysis, they are not yet practice-ready, citing model validation and
uncertainty quantification as key obstacles. These challenges are closely tied to how
endogenous forces are specified in QSMs, since the strength and nature of agglom-
eration and dispersion mechanisms critically determine equilibrium spatial structure

and, ultimately, the robustness of counterfactual predictions.

5 Concluding remarks

We briefly discuss several examples to illustrate that our theoretical framework also
offers a unifying interpretation of seemingly heterogeneous empirical findings. See
Duranton and Turner (2025) for a more comprehensive survey of empirical evidence
on how transport infrastructure affects urban and regional growth.

Evidence on regional growth from Faber (2014) is consistent with the predictions of
Type G or GL models. He examines peripheral cities in China and finds negative effects
on economic output. This may reflect a tendency for economic activity to concentrate
in relatively larger or more central regions as transport access improves.”> Baum-Snow
et al. (2020) provide complementary evidence for China, documenting slower growth
in the hinterland prefectures compared to regional primates following the expansion
of the highway system.

In the intra-urban context, Baum-Snow (2007) and Baum-Snow et al. (2017) provide
evidence for the US metropolitan areas from 1950 to 1990 and for Chinese prefectures
from 1990 to 2010. Both studies examine how the share of population or production
in the central area within a larger region changes as the transportation infrastructure
expands, and both report negative effects in the central area. This is consistent with the
behavior of Type L or LG models after transport investments. Such local spread can also
be viewed as suburbanization driven by improved intra-urban transport infrastructure
or by the diffusion of motorized transportation in the Alonso-Muth-Mills framework.?*

As seen above, a unified theoretical framework can help synthesize and interpret
empirical findings. Since this study focuses on static models with a single agent type,
further scrutinies are essential for providing a bird’s-eye view of both the empirical
evidence and the now vast quantitative spatial economics literature. We conclude by
outlining two directions that merit further theoretical investigation.

First, it is important to consider multiple types of mobile agents that differ in their

ZDuranton and Turner (2012) document that transport infrastructure in neighboring MSAs negatively
affects the employment growth rate of an MSA (Table E2), a pattern consistent with global agglomeration.

24The structural transformation away from agriculture frees land around cities and also contributes
to the decline of urban density (Coeurdacier et al., 2024). This can also be interpreted through the AMM
framework as a reduction in the opportunity cost of land.
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proximity matrices and/or the degree of increasing returns they experience. Such
heterogeneity is ubiquitous in multi-sector models (Fujita et al., 1999b; Hsu, 2012;
Gaubert, 2018; Davis and Dingel, 2020) and in intracity models with multiple types of
agents (e.g., Fujita and Ogawa, 1982; Lucas and Rossi-Hansberg, 2002; Ahlfeldt et al.,
2015; Heblich etal., 2020). For example, Duranton et al. (2014) studied the impact of new
highway connections on intercity trade in the US and showed that heavier industries
are more sensitive to improved access. Allen et al. (2024) considered a quite general
spatial model with multiple spatial interactions, but the characterization of endogenous
equilibrium spatial structure has yet to be done, in particular for the cases with multiple
equilibria. Circular geography provides a tractable starting point for analysis of many-
locations under such structures (Tabuchi and Thisse, 2011; Osawa and Akamatsu, 2020).
As Hsu (2012) suggests, the incorporation of sectoral heterogeneity can be particularly
important for understanding the mechanisms behind the remarkable regularities in
the size and spatial variation of cities (Mori et al., 2020).

Second, models with a continuum of agents as considered in this study are com-
plementary to “granular” spatial models (e.g., Ahlfeldt et al., 2022), in which endoge-
nous agglomeration arises from increasing returns and the indivisibility of agents.
Continuum-agent models can replicate systematic spatial regularities, such as periodic
agglomeration patterns and city-size distributions that include their fractal structure
(e.g., Hsu, 2012; Tabuchi and Thisse, 2011; Mori et al., 2023). Granular spatial models
are better suited to capture idiosyncratic location choices by superstar firms and large
plants (e.g., Greenstone et al., 2010). Combining these two approaches may yield a
deeper understanding of the spatial patterns of economic activities as the result of

endogenous forces.
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A Proofs

A.1 Proof of Lemmal

First, we can represent A in terms of marginal migration from region 2 to 1: A(e) =
Ax+5(1,-1) =v1(x+5,5—5) —vp(x+5,5—5). Then, w = A/ (€)|e—o, meaning
that w is proportional to the directional derivative of A with respect to the unit migra-
tion from region 2 to 1, as %(1, —1) is a normalized vector. Here, we used the fact that
3—2(53) = g%(a‘:) and 3%(3‘3) = g—zl(a‘:) due to the symmetry of the regions at . The

stability condition based on the sign of w is valid for general v provided that > 0.

A.2 Proof of Lemma 2

Let 6v;(z) = v;(& + z) — v;(&) be the utility difference in each region under deviation

z. The utility gain for a mover from region j to i is

((Sl)i(z) - (50](z)) . (Al)

SRR

By adding up the utility gains for all the migrants in the economy, the aggregate
utility gain for migrants is measured by w(z) = Y,c70vi(2)z; = L6v(z) "2, as
there are z; agents migrated to region i (if z; > 0) or from region i (if z; < 0), each
experiencing utility difference dv;(z) at both their origin and destination. The first-
order approximation shows év(z) ~ v(&) + Vv(&)z — v(&) = Vou(&)z and hence
gives w(z) =z Vz.

It is noted that w(z) must be considered subject to z € T, where T = {z € RV |
Y.icz zi = 0} is the set of all feasible deviations that preserves the total population. To
avoid technicality, the main text do not mention the constraint z; € T. This constraint
excludes deviations of the form z = (e,¢€,...,€), which represents the symmetric

increase or decrease of population across all regions.

A.3 Proof of Proposition 1

We consider spatial models described by a payoff function (i.e., indirect utility) v(x) =

(vi(z))iez, parametrized by a proximity matrix [¢;;], along with Assumption C. Let D
$ij
Ykez Pik
we assume that v is differentiable if x; > 0 for all i € Z. The precise version of the

be the row-normalized proximity matrix, whose (i, j)th element is . Throughout,

symmetry of exogenous local fundamentals in Assumption C is the following;:
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Assumption S. For all z, payoff function v satisfies v(Px) = Pv(x) for all permutation
matrices P that satisfy PD = DP. [

Example 4. Suppose N = 4. If we consider regions 1 and 3, swapping their indices
corresponds to applying the following permutation matrix to the spatial distribution

and the payoff function:

(A.2)

O = OO
o O = O
S O O -
_ o O O

This matrix simply switches the values of x1 and x3 in any vector (x1,x2, X3, x4). That
is, Pz = (x3,x7, x1, x4). This corresponds to relabeling the regions while keeping their
physical positions fixed. The condition PD = DP ensures that the relabeling preserves
the spatial relationships encoded in D. If v does not include any region-specific
heterogeneities, then the transformed utility vector must satisfy v(Px) = Pv(«). This
property is called equivariance; it ensures that utility differences are determined entirely
by the spatial distribution, not by arbitrary index labels. Equivariance allows us to
employ the machineries from group-theoretic bifurcation theory (see, e.g., Golubitsky
and Stewart, 2003; Golubitsky et al., 2012; Ikeda and Murota, 2014). [ |

Under Assumption C, we can use the full dispersion as the initial state.

Lemma 3. Under Assumption C (including Assumption S), the uniform distribution

of agents, & = (%, X,...,%) with ¥ = 1/N, is a spatial equilibrium. [ |

Proof. For any permutation matrix P, £ = P&. Then, v(PZ) = Pv(&) reduces to
v(&) = Pv(&) for all permutation matrix P that satisfies PD = DP. This implies that

vi(€¢) = vj(z) forany i,j € Z. That is, Z is a spatial equilibrium. O

We focus on a class of models that include all models discussed in the main text.

As in the main text, let V = V(&) be the benefit matrix for a given payoff function.

Definition 2. A canonical model is a model associated with a rational function () that is
continuous over [0, 1] such that V.= Q (D). We call Q) the gain function of the model.

In Definition 2, a rational function ) is a function of form Q(-) = Q¥(-)/Q’(-) with
polynomials Qf(-) and Q" (-) # 0, where our convention is that O’ (-) > 0. Given such
0O, welet Q(D) = (D) 'Qf (D), where, for a polynomial P(®) = ¢y + ¢10 + c,0% +
-, we define P(D) = col + ¢;D + c;D? + - - -, with I being the identity matrix.
Below, we study the stability of & in canonical models. Formally, we must introduce
some dynamics to define the stability of £ and study agglomeration from there. For a

wide class of dynamics, however, we can focus on the analysis of the benefit matrix V.
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Lemma 4. Assume a canonical model and assume Assumption C. For a wide class
of myopic adjustment dynamics, & is stable (unstable) if the largest eigenvalue of V,
excluding the one corresponding to 1 = (1,1,...,1), is smaller (greater) than zero.
Furthermore, if only the sign of the largest eigenvalue turns from negative to positive
at some ¢* € (0,1), then a new spatial equilibrium branches from & at ¢*, toward the

direction of associated eigenvector. u
Proof. See Section A.4. O

We can assume, for example, the replicator dynamics (Taylor and Jonker, 1978) to define
local stability of spatial equilibria (see the proof of Lemma 4 for more examples).
Thus, we only need the eigenvalues of V. A useful fact is that, if {(©, zx)} are the
eigenpairs (eigenvalue—eigenvector pairs) of the normalized proximity matrix D, then
the eigenpairs of V.= Q(D) are given by {(Q(®y), 2¢)} (e.g., Horn and Johnson, 2012,
Section 1.1). Thus, we need the eigenpairs of D. For the sake of simplicity, we assume

that N is a multiple of four. Then, we have the following lemma.

Lemma 5 (Corollary of Akamatsu et al. (2012), Lemma 4.2). Assume Assumption C.
The largest eigenvalue of D is ©p = 1, with zyp = (1,1,...,1) being the associated
eigenvector. Including @, there are & + 1 distinct eigenvalues. Every eigenvalue ©
(k # 0) is a strictly decreasing function of ¢, with limg o ©r = 1 and limyy O = 0.
Let Omax denote the largest eigenvalue and Onin denote the smallest eigenvalue of D

excluding ©, respectively. Further, assume that N is a multiple of four. Then,

_@ =179 1-¢? L+ /2
Omax = 01 = 1+¢ 11— 2cos(x)¢p + ¢? 1 PN/2 (A.3)
1—¢\2
®min - ®N/2 = (m) (A4)

atany ¢, withx = 2% and Omax = 1 has multiplicity two. For a vector z, let(zi>f.i _01 =

ﬁ (zi)f\i 61 denote its normalized version. Then, the eigenvector associated with @ pyax

is z;" = (cos(xi))¥ ;' and z; = (sin(«xi))¥ !, and that associated with @min is 2,2 =
(=)HN P =(1,-1,1,-1,...,1,-1). =

Since O € (0,1) for all relevant k and Q) is well-defined for all [0, 1], the eigenpairs of
V = (D) are in fact given by {(Q(®y), zx) }. Thus, with wy = Q(Oy), the symmetric
equilibrium & is stable if wy < 0 for all k.

As discussed in Section 2, if agglomeration (dispersion) force of the model is too
strong, Q(®) > 0 (QA(®) < 0) can happen for all © whereby & is unstable (stable) for
all . As we are interested in spatial agglomeration in the course of changing ¢, we

assume that & can switch its stability depending on ¢:
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Assumption E (Endogenous agglomeration occurs). The values of the model parame-

ters are such that Q) switches its sign at least once in (0, 1). u

Under Assumption E, we can define three prototypical classes of canonical models

(see Fig. 5 in the main text for illustration).
Definition 3. Under Assumption E, a canonical model with gain function () is

(a) Type L, if there can be one and only one ®** € (0,1) such that Q(®) < 0 for
O € (0,0*), Q(0™) =0,and Q(O) > 0 for O € (0*,1).

(b) Type G, if there can be one and only one root ®* € (0,1) for Q such that Q(®) > 0
for ® € (0,0*), Q(O®*) =0,and Q(O) < 0 for O € (0%, 1).

(c) Type LG, if there can be two ®*,®@** € (0,1) such that Q(®*) = Q(®**) =0
and @ < ©*, with Q(0®) < 0 for ® € (0,0*) U (©*,1) and Q(®) > 0 for
O € (0", 0%).

As discussed in the main text, the classification corresponds to the composition
of the consequential dispersion forces in the model. We focus on the three model
classes defined above and consider the destabilization of &. There can be a fourth class
of models such that « is stable for medium levels of ® but not for small or large ©.
However, we are not aware of any model that falls into this category.

As we consider canonical models, there is a rational function Q(-) = Q¥(-) /(")
with some polynomials QF and O’ (-) > 0. Thatis, Qf(-) determines the sign of wy and
thus governs the stability of &. We will focus on Qf below, and let w* = QF(®;) so that
sgn[wg] = sgn[wi]. Fig. A.1 schematically shows connections between {w,ﬁ}, 04O),
and {O} to help understanding the following arguments.

Type L. By definition, there is ®** such that Q%(®) < 0 for all @ € (0,@**), that
Q@) = 0, and that Qf(@**) > 0 for all @ € (®**,1). Thus,  is stable if and only
if @ € (0,0%), so that wi = O}(®y) < 0, for all k, i.e., if @ > max; ©; = ©;. Thus,
Z is stable for all (¢*, 1) where ¢** is the unique solution for ®1(¢) = ©**. Because
OFf(®) > 0 for all ® € (®*,1) and @ is strictly decreasing, & is unstable for all

(0,¢™).

Type G. By definition, there is ®* such that Qf(®) < 0 for all ® € (®*,1), that
Of(®*) = 0, and that Qf(@) > 0 for all ® € (0,0*). By Lemma 5, {@(¢)} are
strictly decreasing from 1. Thus, & is stable if and only if @, € (©®*1), so that
w£ = 0%(@y) < 0, forallk, i.e., if @ < ming @, = Op,. Thus, & is stable for all (0, ¢*)
where ¢* = (1 —+/0*)/(1 + V/©%) is the unique solution for @y, = ©*. Because
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Figure A.1: The relationships between Qf, {®;}, and {wg}

Note: Top: Graphs of w,E = Of(©}). Bottom left: Net gain function Qf for a hypothetical Type LG model

with a quadratic net gain function of the form Of (@) =co+ 1O+ c,®2. Bottom right: The full set of
eigenvalues {©} of D. In the shaded regions of ¢ or ©, & is stable. For the ¢ axis, the negative log
scale is used for better readability, with the transport cost level being high toward the right. We have
max{O} = Omax and min{ Oy } = Op,y, at any given level of ¢.

Q@) > 0 for all ® € (0,0*) and Oy, is strictly decreasing, & is unstable for all
(¢*,1) because wg\,/z > 0 for the range.

Type LG. Via similar logic, we see & is stable if ¢ € (0, ¢y, ,) U (¢7,1).

Spatial patterns. Consider a state where & is stable. From Lemma 4, at ¢* in Types
G or LG, a polycentric pattern with N /2 peaks branches from &, while at ¢** in Types

L or LG, a monocentric configuration branches from &. [

Remark 1. The bifurcation towards the monocentric direction (k = 1) is a double
bifurcation, where the associated eigenvalue w; has multiplicity two, that is, there are
two linearly independent eigenvectors. Migration patterns at this bifurcation take the
form ¢tz + ¢z forct,c” € R. Under Assumption C, only (¢*,¢™) = (c,0) or (¢, c)
for some ¢ € R are admissible (Ikeda et al., 2012). The conclusion of Proposition 1 is

not affected as both combinations yield monocentric configurations. u

Remark 2. Although Definition 3 introduces three prototypical model classes, Type LG

models sometimes span multiple classes depending on parametric restrictions (e.g.,
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models by Pfliiger and Tabuchi, 2010; Kucheryavyy et al., 2024). In such cases, the
parameter space can be partitioned to map model behavior to the typology. Also, the
definition of models often impose parametric restrictions that fix their class. In princi-
ple, flexible specifications would allow empirical identification of the class supported

by data through parameter estimation. u

Remark 3. In Lemma 5, we assume that N is a multiple of four to ensure min, {©@;} =
) N This is inconsequential for the broad implication of Proposition 1 on spatial
patterns. If N is an even, ming{®;} = min{@)%_l, G)%} If N is an odd, mini{®;} =
rnin{@L N O j—l}‘ Thus, ming{®y} corresponds to a polycentric direction, except

for the case N = 2 or 3 in which polycentric patterns cannot occur. u

Remark 4. Beyond the local result of the proposition, Ikeda et al. (2012) character-
ized the possible equilibrium configurations and bifurcations in symmetric circular
economy by group-theoretic analysis. Two formal predictions are worth mentioning.
First, no symmetry-breaking bifurcations can occur after the emergence of a single-
peaked spatial pattern. For Type L models, the spatial configuration remains mono-
centric for the whole range of ¢ if the full dispersion is unstable (Figs. C.1, C.1B and 9A)
The other prediction is that, if M same-sized agglomerations are equidistantly
placed on a circle, a symmetry-breaking bifurcation may reduce their number to K <
M, with K again dividing N and the agglomerations remaining equidistant.
Proposition 1 (a) implies that Type G models yield § agglomerations, with further
bifurcations of the form % — % — % — - -+ — 2 — 1 expected if N is a power of two
(Akamatsu et al., 2012; Ikeda et al., 2012; Osawa et al., 2017). For Type L, Takayama
et al. (2020) confirmed the emergence of single-peaked or monocentric patterns in the
(Murata and Thisse, 2005) model. Akamatsu et al. (2016) formally compares Forslid
and Ottaviano (2003) (Type G) and Helpman (1998) (Type L). All available formal
results in the literature corroborates with Proposition 1 and the numerical examples in
this study:. u

A.4 Proof of Lemma4

A myopic adjustment dynamic is a system of ordinary differential equations that
describes the rate of change in the spatial distribution x. Denote the dynamic that
adjusts x over the set of all possible spatial distributions X = { >0 | Y;c7x; =1}
by & = f(x), where & represents the time derivative satisfying } ;-7 ¥; = 0 so that the
total population is invariant. For example, f(z) = f(z, v(x)) where f maps each pair

(z,v(x)) of a state and its associated payoff to a motion vector .
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We require the following conditions on f: (RS) f(x) = 0if x is a spatial distribution
in which all populated regions earn the same payoff level, i.e., v;(z*) = vy(x*) for all
jke{ieI|xi >0} PC)v(z)' f(z) > 0if f(x) # 0, and (Sym) Pf(z) = f(Px)
for all permutation matrices P. We call dynamics that satisfy (RS), (PC), and (Sym)
admissible dynamics. The conditions (RS) and (PC) are called restricted stationality and
positive correlation, respectively (Sandholm, 2010). Also, (Sym) requires that f treats
all regions symmetrically. Finally, we assume that f admits a C! extension to an open
neighborhood of X in RY to use simple derivatives.

Admissible dynamics include the Brown-von Neumann-Nash dynamic (Brown
and von Neumann, 1950; Nash, 1951), the Smith dynamic (Smith, 1984), and Rieman-
nian game dynamics (Mertikopoulos and Sandholm, 2018). The projection dynamic
(Dupuis and Nagurney, 1993) and the replicator dynamic (Taylor and Jonker, 1978)
are representative instances of Riemannian game dynamics that satisfy (Sym), and are
often applied for regional models.

For the uniform distribution &, (RS) implies f(&) = 0, i.e., & is a stationary point
of f. Denote the Jacobian matrix of f at € by F = [%(@)] Assume that F has no
eigenvalues with zero real parts. Then, & is linearly stable if all the eigenvalues of
F, which we denote by {7}, have negative real parts, and linearly unstable if some
eigenvalue has positive real parts (see,e.g., Hirsch et al., 2012). Spatial equilibrium & is
said to be stable (unstable) if it is linearly stable (unstable) under admissible dynamics.
The marginal case in which the largest eigenvalue has zero real parts is unimportant
as it often corresponds to measure-zero subsets of the parameter space.

Under admissible dynamics, the stability of & can be determined by V, i.e., without
checking F explicitly. To exclude degenerate cases, assume that there is no other
equilibrium in the neighborhood of &. Then, (PC) implies that there is a neighborhood
O C X of  such that v(x)" f(x) > 0 for all x € O\ {Z}. For small deviation
z=x—xwithe € O\ {z}, f(z) = f(&)+Vf(x)z =Fz,v(z) = v(z)+ Vo(z)z =
014+ 2V,and 0 =1T# =17 f(z) ~ 1T Fz. Combined together, forallz € O \ {z},

v(x) f(z) ~ (v(&) + Vo(@)z) (f(&)+Fz) = g (Vz)' (Fz) > 0. (A.5)

Under Assumption C, we can choose the same set of eigenvectors for V and F because
they are both symmetric circulant matrices. Let {z;} be the set of eigenvectors and let
wk and 7 be the eigenvalues of V and F associated with zi, respectively. Then, for

each eigenvector zj except for zp = 1, Eq. (A.5) yields

(Vz)' (Fz) = wyrpe > 0. (A.6)
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As F and V are both symmetric, 17, and wy are both real. Thus, Eq. (A.6) implies
sgn|[nx] = sgn|[wy]. Therefore, & is stable under all admissible dynamics if and only if
wy < 0 for all k, excluding k = 0 that corresponds to zp = 1. Likewise, & is unstable if
and only if wy > 0 for some k, again excluding k = 0.

Suppose exactly one wy changes sign from negative to positive at ¢;. Then, from
Eq. (A.6), the corresponding eigenvalue of the Jacobian matrix of any admissible dy-
namic at  must also cross zero at ¢;. Bifurcation theory shows that the system departs
from & along the direction of the associated eigenvector z, as it is tangent to the “un-
stable manifold” at the bifurcation point (see, e.g., Hirsch et al., 2012; Kuznetsov, 2004).

* * *

Appendices B to F are provided as a separate online appendix.
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This appendix collects derivations and numerical examples omitted from the main text.
Appendix B examines the evolution of Japanese cities from 1970 to 2020. Appendix C
presents numerical examples for an eight-region circular economy. Appendix D considers
alternative transport network geometries while preserving symmetry in local characteristics.
Appendix E studies variations in local characteristics within the circular economy. Appendix

F contains detailed derivations.
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B Evolution of cities

B.1 Development of high-speed transport networks in Japan

Figure B.1 reports the development of high-speed railway and highway networks, respec-
tively, in Japan between 1970 and 2020. Both networks were initially spurred by infrastructure
investments surrounding the 1964 Tokyo Olympics. Over this period, total highway length
increased from 1,119 km to 9,050 km, while high-speed rail expanded from 515 km to 3,106
km, which are more than eightfold and sixfold increases, respectively. The steady, long-run
expansion of these networks makes Japan a natural setting for studying comparative statics
with respect to transport costs.

A. High-speed railway network R B. Highway network

2010-2020
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- 1990-2000
= 1980-1990
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Figure B.1: The development of high-speed network in Japan
Notes: Data source: The Digital National Land Information Download Service (Highway: https://nlftp.

mlit.go.jp/ksj/gml/datalist/KsjTmplt-N06-2023.html, High-speed railway: https://nlftp.mlit.go.
jp/ksj/gml/datalist/KsjTmplt-NO5-2023.html).
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Figure B.2: Urban agglomerations of Japan in 2020

B.2 Japanese cities and their growths

We identify cities in Japan using the Grid Square Statistics from the Population Census
for 1970-2020. A city is defined as an urban agglomeration (LLA), consisting of contiguous
1 km x 1 km grid cells with a population density of at least 1,000 persons/km? and a
total population of at least 10,000. Our results are robust to alternative threshold values.
Figure B.2 displays the 431 UAs identified in 2020. These UAs occupy 6% of Japan’s land
area while containing about 80% of the national population. Populated cells with fewer
than 1,000 residents are shown in grey, with darker shading indicating higher population
counts. We restrict the analysis to grid cells that are reachable by road from the four major
islands—Hokkaido, Honshu, Shikoku, and Kyushu. UAs are identified separately for each
census year from 1970 to 2020 (at five-year intervals), and consistent unique IDs are assigned
across years to track individual agglomerations over time. For details on the construction of
UAs, see Mori and Murakami (2025).

From 1970 to 2020, the total population in these cities grew by 55%, while the national
population increased by only 21%. The population of the largest city, Tokyo, has grown
by 67%, an increase about the same size of the second largest city, Osaka. Figures B.3
and B.5 provide closer looks. Population growth is typically associated with concurrent
areal growth (Fig. B.3A), but population density generally decreased during the 50 years
period (Fig. B.3B), in particular for small to medium-sized cities, indicating local spreading
of these cities. It is noted that the largest cities also experienced local spreading as evident
in their spatial distributions shown in Fig. 1C as well as Fig. B.4.

Figure B.5 plots cities’ areal growth rates against their population growth rates, both mea-
sured on a logarithmic scale. By definition, log(area) = log(population) — log(density), so
the diagonal line in each panel represents constant population density (i.e., a density ra-
tio of one). Cities above this line experienced a decline in density, whereas those below
experienced an increase. The vertical and horizontal reference lines indicate Japan’s ag-
gregate population growth ratio (1.21), and their intersection corresponds to a hypothetical
city whose population and area both grew at the national average rate. For most cities,
areal growth exceeded population growth. Relative to these reference lines, the northeast
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Figure B.3: Population and density growths from 1970 to 2020

Note: In Panel A, the dashed horizontal line indicates simple mean of the growth ratios of the identified Japanese
cities from 1970 to 2020 (1.45), and the dot-dashed line indicates the growth ratio of the total population of
Japan (1.21). Likewise, the dashed horizontal line in Panel B shows the arithmetic mean of the density growths
ratios. In both panels, marker color encodes the area growth ratio during the same period. For the city labels,
number in parentheses shows the change in a city’s population rank (or the invariant rank) from 1970 to 2020.
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(B) The population distribution within Nagoya in 1970 and 2020

Figure B.4: Local dispersion of Osaka (rank = 2) and Nagoya (rank = 3).

Note: The warmer colors indicate larger populations. The darkest grid cells have at least 20,000 inhabitants.

The other thresholds are 15,000, 10,000, 5,000, 2,000, and 1,000 inhabitants.
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Figure B.5: Population and area growths from 1970 to 2020

Note: The diagonal line in each panel represents the locus of unchanged population density, as it indicates
log(density ratio) = log(population ratio) — log(area ratio) = 0. Marker color encodes the population size in
2020 for the left panel, and the population density in 2020 for the right panel. The number in parenthesis after
the city names represents their rank in the respective senses, and top five cities are shown.
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Figure B.6: Maximum and average employment density within a city in Japan in 1975-2014

Notes: The green and blue lines show the arithmetic means of maximum and average employment densities
within a city for years 1975, 1981, 1986, 1991, 1996, 2001, 2006, 2009, and 2014. The shaded area indicates the
range covering 90% of the values for individual cities. The grid-cell data of employment are obtained from the
Grid Square Statistics of the Census for Establishment (1975, 1981, 1986, 1991); Establishment and Enterprise
census (1996, 2001, 2006); Economic Census for Business Frame (2009 and 2014) of Japan.

quadrant indicates simultaneous expansion in population and area (overall growth), while
the southwest quadrant corresponds to joint decline, or urban shrinkage. The northwest
quadrant reflects relative urban sprawl (area growth accompanied by relative population
decline) whereas the southeast quadrant indicates relative densification (population growth
accompanied by relatively slow area expansion). The southeast quadrant contains very few
observations, suggesting that relative densification has been limited.

Employment distribution. The tendency of local dispersion is observed in alternative
indicator of agglomeration other than population. Figure B.6 shows the change in the mean
values of the maximum and average employment density within a city across all cities in
Japan from 1975 to 2014. Their long-run trend indicates that the geographical distribution
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Figure B.7: Global concentration and local dispersion

of employment in a city has flattened over the past half century.

B.3 Cities in other countries

Figure 1 in Section 1 uses Japanese Census data. To allow a parallel comparison between
different countries, we employ the the LandScan™ Global Population Database, developed
by the Department of Energy’s Oak Ridge National Laboratory (ORNL), as the basic grid
population data to see the evolution of cities. Cities are defined in the same manner as
for Japanese cities. To asses compatibility between the LandScan data and the census we
compare Census and the LandScan data for Japan. Figures B.7A and B.7B are, respectively,
based on the Census and the the LandScan data. The LandScan data is only available
after 2000, and are only roughly in agreement with the precise data based on Census. It is
also noted that, while the LandScan data is available every year, we employ 5-year steps to
avoid noises due to its data generation procedure that incorporates various interpolations.
Nonetheless, Figure B.7 confirms the broad tendency of nationwide concentration and local
flattening of the cities. To be consistent with our theory that assume a fixed total population,
we normalize the total population in each country to unity. In the cases of France, Germany
and Japan, the local flattening is apparent even without the normalization.
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C Eight regions

This section considers agglomeration processes in the N = 8 circular economy. For a selected
model from each model category, we follow stationary equilibria branching from & and then
numerically check the local stability of those stationary equilibrium solutions under the
replicator dynamic (Taylor and Jonker, 1978).

Type L model. Figure C.1 considers a Type L model by Allen and Arkolakis (2014) (Sec-
tion F.2.4; weseta = 0.5, B = —0.3, and ¢ = 6.0). The model incorporates a local dispersion
force but no global dispersion force. The uniform equilibrium & is stable when transport
costs are low (when ¢ is close to 1). If we start from & and consider the process of a mono-
tonic decrease in ¢ from ¢ ~ 1, then a unimodal pattern emerges due to the bifurcation at ¢**
[Proposition 1 (a)]. This is the bifurcation in the model. When ¢ decreases further, the spatial
pattern smoothly converges to a full concentration in a single region in the lower extreme
(¢ = 0). The local dispersion force is less important than the benefits of agglomeration when
interregional transportation is prohibitively costly. Mobile agents prefer concentrating on a
smaller number of regions because of the agglomeration forces. As ¢ increases, agglomera-
tion force due to costly transportation diminishes, and the relative rise in the local dispersion
force induces a crowding-out from the populated region to the adjacent regions. As a result,
the spatial pattern gradually flattens and connects to & at ¢**. We can interpret the region at
the mode of population distribution (region i such that x; > x;_; and x; > x;,1 where mod
N for indices) as the location of an agglomeration. Then, this model endogenously produces

at most one agglomeration.

Type G model. Figure C.2 reports stable equilibrium patterns in the course of increasing
¢ for the Krugman (1991) model (Section F.2.1; we set 4y = 0.5, ¢ = 10, and L = 8.). In
Fig. C.2A, the black solid (dashed) curves depict the stable (unstable) equilibrium values of
x; at each ¢. Figure C.2B is the schematic illustration of the stable spatial pattern on the path.
The letters in Fig. C.2B correspond to those in Fig. C.2A. The global dispersion force in the
Krugman model stems from competition between firms over consumers” demand. If ¢ is
low (if transport costs are high), firms have few incentives to agglomerate, and the uniform
distribution is stable. If we increase ¢, competition with firms in other regions becomes
fiercer, as the markets of other regions become closer. At some point firms are better off
forming small agglomerations so that each agglomeration has its dominant market area but
is relatively remote from other agglomerations of firms. At the so-called “break point” ¢*, a
bifurcation from & occurs and the spatial pattern is pushed towards the formation of % =4
distinct agglomerations [Proposition 1 (b)]. A further increase in ¢ causes the second and
third bifurcations at ¢** and ¢***, respectively. These bifurcations sequentially double the
spacing between agglomerations, each time halving their number, 4 — 2 — 1, in a close
analogy to the first bifurcation at ¢*. We can formally analyze the successive bifurcations if
we assume a specific model (Ikeda et al., 2012b; Akamatsu et al., 2012; Osawa et al., 2017,

see, e.g.,). At the higher extreme of ¢, agents concentrate in a single region. This behavior
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can be understood as a gradual extension of the market area of each agglomeration.

Type LG model. With both local and global dispersion forces, Type LG models exhibit
an interplay between the number of agglomerations, spacing between them (as in Type G
models), and the spatial extent of each agglomeration (as in Type L models). Figure C.3A
shows the evolution of the number of agglomerations in the course of increasing ¢ under
the Pfliiger and Stidekum (2008)’s model (Section F.2.3; we set p = 04, 0 = 2.5, L = 4,
v = 0.5, and a; = 1). The number of agglomerations in a spatial distribution is defined by
that of the local maxima therein. Figure C.3A exhibits the mixed characteristics of Figs. C.1
and C.2, as expected. When ¢ < ¢* or ¢ > ¢**, & is stable. We interpret the number of
agglomerations in & as either 8 (for a low ¢) or 1 (for a high ¢) to acknowledge that & at the
low and high levels of ¢ are distinct. When ¢ gradually increases from ¢ ~ 0, the number of
agglomerations reduces from 8 — 4 — 2 — 1 as in the Type G models (Fig. C.2), whereas it
is always 1 in the latter stage as per the Type L models (Fig. C.1). The initial stage is governed
by a decline in the global dispersion force, while the later stage is marked by a relative rise
of the local dispersion force.

Figure C.3B illustrates the spatial patterns associated with Fig. C.3A. Uniform pattern & is
initially stable (Pattern A) and the first bifurcation at ¢* leads to a quad-modal agglomeration
(B, C), whereas the second bifurcation to the formation of a bimodal agglomeration (D, E).
These transitions are in line with Fig. C.2 and are governed by the gradual decline in the
global dispersion force. A further decline in the global dispersion force increases the relative
importance of the local dispersion force. As a result, the bimodal agglomeration flattens
out gradually (F, G). When ¢ increases further, it reduces to a unimodal agglomeration (J,
K). The unimodal agglomeration flattens out as ¢ increases (L, M) until it converges to the
complete dispersion (N) at ¢**.
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D Geographic advantages

The implications of Propositions 1 to 3 qualitatively generalize to different settings such as
one-dimensional line segment, two-dimensional spaces. The spatial distribution of agents
becomes polycentric in Type G models, whereas it becomes monocentric in Type L models.

The simplest way to introduce geographic asymmetry into our one-dimensional setting is
to consider a bounded line segment, which is a standard stylized setting in urban economic
theory. Ikeda et al. (2017b) considered a Type G model (Forslid and Ottaviano, 2003) in a line
segment. They showed that multiple agglomerations emerge as in the circular economy and
demonstrated that the evolution of spatial structure in a line segment approximately follows
the “period doubling” behavior (Akamatsu et al., 2012; Osawa et al., 2017). For Types L
and LG, Fig. D.1 reports examples of endogenous agglomeration patterns in the models by
Helpman (1998) and Pfliiger and Stidekum (2008). For both models, qualitative properties
of the spatial patterns are consistent with those discussed in Section C.

The two-dimensional counterpart of the symmetric circle is bounded lattices with peri-
odic boundary conditions, for which a basic theory of spatial agglomeration is provided in
Ikeda and Murota (2014). For Type G models, they typically produce multiple disjointed
agglomerations and period-doubling behavior as discussed in Section C (see, e.g., Ikeda
et al., 2012a, 2014, 2017a, 2018). As concrete examples, Figure 11 in the main text shows
endogenous equilibrium spatial patterns over a bounded square economy with 9 x 9 = 81
regions in the course of increasing ¢ for the Krugman and Allen—Arkolakis models. The pa-
rameters are the same as Figs. C.1 and C.2. Their agglomeration processes are qualitatively
consistent with Propositions 1 to 3 and examples in Section C, suggesting the robustness of
qualitative implications of our theoretical developments.

The implications of Proposition 1 seem to extend to different assumptions on transport
technology that are not formally covered by Assumption C. For example, linear transport
costs are often assumed in the literature (e.g., Mossay and Picard, 2011; Picard and Tabuchi,
2013; Blanchet et al., 2016). Mossay and Picard (2011) considered a variant of the Beckmann
model (Type L) and showed that the only possible equilibrium is a unimodal distribution
in a continuous line segment. Blanchet et al. (2016) considered a general Type L model
over a continuous one- or two-dimensional space; they showed that the equilibrium spatial
pattern for the Beckmann model is unique and given by a regular concave paraboloid, i.e., a
unimodal pattern. Picard and Tabuchi (2013) also considered a Type L general equilibrium
model in a two-dimensional space and showed that spatial distribution becomes unimodal.
The numerical results of Anas and Kim (1996) and Anas et al. (1998) in line segments bear
a close resemblance to, respectively, agglomeration behaviors of Type L and G models,

although they assume endogenous transport costs between locations.
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Figure D.1: Stable spatial patterns in a line segment.

Note: There are no asymmetries in regional characteristics except for geographic accessibility. The transport
cost between every consecutive pair of regions is uniform. The level of transport cost monotonically decreases
from top to bottom. Panels (A) and (B) consider a line segment with 65 locations. Panel (B) adapted from Ikeda
et al. (2017b) considers 17 locations; see the original paper for an extensive discussion.
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E Local advantages

This appendix introduces small region-specific asymmetries within a circular geography. We
show thatimproved interregional access raises population in regions with greater exogenous
advantage under global dispersion forces, but lowers it under local dispersion forces.

E.1 Evaluating the impacts of local characteristics

Consider a spatial model with the indirect utility function v. Let a; > 0 denote the innate
characteristics of region i, and write @ = (4;);cz. For example, a4; may represent the level
of exogenous amenities or productivity in region i>°>. All regions are perfectly symmetric if
a; = a > 0 for all i. In this case, the uniform population distribution & is an equilibrium.

When equilibrium is unique, counterfactual analysis proceeds by examining how the
population distribution « responds to changes in interregional transport costs, holding the
calibrated regional characteristics fixed. This assumption that a remains unchanged under
the counterfactual shocks is central to quantitative predictions. Hence, it is important to
understand how a influences model outcomes.

Suppose now that a deviates slightly from a, so that & is no longer an equilibrium. If the
deviation is small, the resulting equilibrium z(a) will remain close to & except for knife-edge
cases. Thus, we can view x(a) as a continuous function of a satisfying x(a) = .

To quantify the overall impact of variations in a, we define the covariance between each

region’s relative advantage and its deviation in population share from &:

Exogenous regional (dis)advantage

T _ —_
p=), (a—a) (xi(a) —%). (E.1)
i€T T~
Population deviation from &
For example, if p = 0, variations in a have no impact on the spatial distribution. We assume
p > 0, reflecting the natural intuition that more advantaged regions attract more population.
Importantly, the response of p to changes in transport costs captures how the internal
structure of a model shapes its counterfactual behavior. In particular, it reveals the model’s
intrinsic directional bias: whether it systematically favors the concentration of population in
relatively advantaged regions (4; > @) under transport cost shocks. An increase in p implies

that such regions gain population in the new equilibrium; a decrease implies the opposite.

E.2 Formal characterizations

We can analytically characterize the response of p under symmetric transport cost structures.

Two regions. Assume that two regions have the same local characteristics and assume that

& = (%, x) is stable. Consider a marginal regional asymmetry of the form a = (i +¢€,d — €)

2 All endogenous mechanisms related to agents’ spatial distribution z, including endogenous amenities
e.g., Diamond, 2016), are embedded in the indirect utility function v in our framework.
& y
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(A) The Redding—-Sturm model (Type L) (B) The Krugman model (Type G)

Figure E.1: The curve of the utility gain w for the two-region case.

with small €, so that & is perturbed to a new equilibrium x = (X 4 ¢, ¥ — ¢) with small ¢.

We can assume that ¢ > 0 and € > 0. Then, by definition, we have
p=(m—a)(xy—%)+ (ap—a)(xp — %) =€l + (—€)(—¢&) =2e¢ > 0. (E.2)

Notably, we can obtain the analytical expression for p for a given spatial model. First,
we recall that the utility gain due to migration from & is negative (w < 0) as we assume &
is stable. Next, the utility gain induced by small regional asymmetry (@ + €,4 — €) can be

evaluated by the following elasticity, analogous to w:

(E)vl(@,a) B avz(@,d)> , (E.3)

i =
W= 8a1 8a1

Q|

where 7 = v;(&, a). The dependence of v on a is made explicit. Then, we have:

Lemma 6. Assume N = 2. For the perturbed equilibrium under a = (@ + €,a — €) with

h =
small €, we have p = —c - < where ¢ = 2¢?1. |

Proof. Let f(x,a) = v1(x,a) — va(x,a) with x := x1 and a := a1. Then, f(x,a) = 0 since the
new spatial distribution « is an equilibrium. At (x,a) = (%,4) and on the equilibrium curve
f(x,a) = 0, we have 0 = fi(x,a)& + fa(x,a)e = 2fe(x,a) 28 + Lfa(x,a)%e = wIE + while.
That is, w < 0 and w” > 0 should counterweight each other. From p = 2¢¢, we obtain the
desired formula. O

Lemma 6 implies the following result on the response of p to the increase in ¢.

Proposition 4. Assume N = 2. If local regional characteristic is multiplicatively separable as

vi(x, a) = a;v;(x) with v;(x) satisfying Assumption S (i.e., no other exogenous asymmetries),
sgnp’(¢) = sgnw'(¢). (E.4)

Proof. Under the hypothesis of the claim, w” = Z(v1(2) —0) = a > 0. Then, p = —c- wh
—% and p'(¢) = L w'(¢) where’ denotes the differentiation by ¢, implying Eq. (E4). [
There is a broad connection between the spatial scale of dispersion forces and the sign

of p'(¢). In Type G models, agglomeration occurs when ¢ increases. Reflecting this, for
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Type G models in the literature, we have w'(¢) > 0 if & is stable. Converse is true for Type L
models, for which dispersion occurs when transport access improves and w’(¢) < 0if & is
stable. Fig. E.1 shows the curves of w for the Krugman model (Type G) and the Redding—
Sturm model (Type L), which demonstrates that Types L and G can come to the opposite
conclusions in the two-region economy. If a model has only a global dispersion force, its
mechanisms strengthen the effects of exogenous local advantages in innate amenities, and
the converse is true for a model with only a global dispersion force.

For other forms of exogenous fundamentals, such clean characterization is not available.
For example, heterogeneities in innate regional productivity can affect the utility level of

other regions through interregional trade, and thus are not multiplicatively separable.

The circular geography. Nonetheless, we have a characterization of the response of p for
general local characteristics. Now suppose the symmetric circle (Assumption C). Several
notations and assumptions are in order. As we have seen in Section 3, the utility elasticity
matrix V. = %[%(a‘c)] at & is simply represented by the row-normalized proximity matrix
D. Suppose V = Q)(D) where () is a scalar-valued rational function that is continuous over
[0,1] and the interpretation of Q)(D) is the same as in Section A.3. In an analogous manner,
let A = %[g—;’; ()] be the utility elasticity matrix with respect to the local characteristic vector
a of interest, and suppose that A can be represented by D. Specifically, let A = Q*(D)
where QF(-) is another rational function that is continuous over [0,1]. In fact, regional
heterogeneities in a can be seen as deviations from a, so the effects of such deviations on
the utility vector can be evaluated exactly the same manner as population deviations from
& considered in the two-region case. Let
0%(0)
00) = ——=, E.5

which corresponds to — %1 for the two-region case.
Proposition 5. Suppose Assumption C and assume that € is stable. Then,

(@) p'(¢) >0,if 6'(®) < 0forall ® € (0,1) such that Q(O) < 0.

(b) p'(¢) <0,if §'(®) > 0forall ® € (0,1) such that Q(®) < 0.
Proof. See Section E 4. O

The multiplicatively separable case is the special case in which Qf(-) = a. For the
general case with non-constant (Y, our three model classes are not precisely mapped to
Proposition 5 (a) or (b). Still, there is a broad tendency that initial advantages are amplified
in Type G models, whereas they are diminished in Type L models. For example, the
regional-scale model considered in Redding and Rossi-Hansberg (2017) is Type L. If we
consider local productivity parameters as regional characteristic vector a, then the model
satisfies ¢'(®) > 0 for all © € (0,1) when equilibrium is unique (see Remark 9 in Section F).
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Figure E.2: Population share of the advantageous region 1 and covariance p

Likewise, the Krugman model is Type G and we show ¢'(®©) < 0 for all © € (0,1) if we

consider immobile demand /; as regional characteristics (see Remark 6 in Section F).

E.3 Numerical examples

This section provides numerical examples for Proposition 5. To introduce exogenous asym-
metry, we multiply the utility in region 1 by a; > 1, whereas we let a; = 1 for all i # 1. We
consider the Krugman model and Allen—Arkolakis model, and basic model parameters are
set to be the same as Fig. C.2 and Fig. C.1 except that region 1 has an exogenous advantage.

Figure E.2A reports equilibrium paths of x; for the Allen—Arkolakis model (Type L)
under the uniqueness of the equilibrium. The curves depict region 1’s population share, x1,
at stable equilibria against ¢. Four incremental settings 4; & {1.000,1.001,1.005,1.010} are
considered, including the baseline case with no location-fixed advantage (a; = 1.000). We
have §'(®) > 0forall ® € (0,1) and see that x; — ¥ > 0 when a; > 1and x; — X increases as
a1 increases, which are intuitive. Additionally, x; — X decreases as ¢ increases. We confirm
that p(¢) > 0 and p’(¢) < 0 for all ¢.

Figures E.2B and E.2C consider the Krugman and Allen—-Arkolakis models under a
multiplicity of equilibria, respectively. Unlike the Allen—-Arkolakis model, the Krugman
model admits multiple equilibria for some ¢ for any pair of the structural parameters (u, o).
Proposition 5 correctly predicts the sign of p’(¢) for the range of ¢ such that & is stable when
a1 = 1; we have p'(¢) > 0 when ¢ € (0,¢*) for the Krugman model, whereas p’(¢) < 0
when ¢ € (¢**,1) for the Allen—Arkolakis model.

In Fig. E.2C, the definition of p is modified for spatial patterns with unpopulated re-
gions. For the range ¢ € (¢*,¢**), p is evaluated with respect to the four-centric pattern
(2%,0,2%,0,2%,0,2%,0): p = Yjcz(s)(xi — 2%)(a; — a(x)), where I(x) = {i € T | x; > 0} is
the set of populated regions and d(x) = m Y.icz(z) 3i- We define p for two-centric pattern
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(4%,0,0,0,4x,0,0,0) similarly. For the transitional phase after ¢** we let

Y, (xi—xf)(a—a(x)), (E.6)

i€eZ(x)

©
Il

where x7 corresponds to the stable solution for the symmetric case (a; = 1).

For Fig. E.2B, we employ Eq. (E.6) as the definition of p for the case ¢ € (0,¢**), i.e., we
consider the deviation from the baseline equilibrium (a; = 1). We observe that p’(¢) < 0
does not necessarily hold true for ¢ € (0,¢**). For instance, p’(¢) > 0 when ¢ is small.
Nonetheless, for the range of ¢ under which & is stable, p decreases in ¢, consistent with

Proposition 5.

E.4 Proof of Proposition 5

We derive the analytical expression of p. If all regions are populated in equilibrium, we have
v(z,a) —9(x,a)l =0, (E.7)

where we make the dependence of v on a explicit, 5(x, a) = Y ;<7 vi(x, a)x; is the average
utility, and 1 is N-dimensional all-one vector. The pair (&, a) is a solution to Eq. (E.7).
Suppose that there is a spatial equilibrium nearby € when a is marginally different from a.
Let z(a) denote the perturbed version of &, which is a function in a. We assume & is stable
so that studying a perturbed version of it makes sense.

The covariance p is represented as follows:

p=(a—a) (z(a) —&) = (Ca)'Cx(a) = a' Cz(a) (E.8)

where C = 1 — £11" is the centering matrix. Let X = %(d)] be the Jacobian matrix of x
]

with respect to a at (€,a). Then, z(a) ~ & + X(a — a) = £ + XCa and thus p = a' CXCa

as Cz = 0. The implicit function theorem regarding Eq. (E.7) at (&, a) gives:

X = — (Vx 12V, — 10(5:)T>_ (va - 15:Tva) (E.9)
— (24117 - (1= 7)) (1= 4T v, (E.10)
— I((I-C)—Civ,) 'clly, (E.11)
=f((1-C)-cv)'cA (E12)

where 7 is the utility level, V, = %(i', a)l, vV, = [%(i‘, a)], V=1V, and A = 2V,
]

ox;j (4
]
For tractability, we focus on a specific form of A which covers many relevant cases.

Assumption A. Suppose Assumption C. Let A = %[%] be the elasticity matrix of the utility
]
with respect to the local characteristic a, evaluated at (&, @). There is a rational function Q)

that is continuous over [0, 1], positive whenever Z is stable, and satisfies A = Q%(D). |
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Example 5. Suppose v;(x, a) = a;v;(x), where a; > 0is the exogenous level of local amenities
and v(x) = (v;(x));ez is the symmetric component of the utility function (i.e., v(x) satisfies
Assumption S). Then, A = al and Qf(-) = a > 0. |

Under Assumptions C and A, X is real, symmetric, and circulant. Thus, the set of
eigenvectors of CXC can be chosen as in Lemma 5 (a) because it is a circulant matrix of the
same size as D. Let {A;}M be the distinct eigenvalues of CXC. As CXC is symmetric, it
admits the eigenvalue decomposition

M-1
CXC = Agll' + Z Ak (z,jz,jT + zk_zk_T) + AMzMz;/I. (E.13)
k=1

This fact yields the following representation of p:

=a'CXCa = Y ath, (E.14)
k0

where @ = (f) is the representation of a in the new coordinate system {z;}. We can drop
k = 0 because Ay = 0, reflecting that zyp = 1 represents a uniform increase in a and thus
does not affect spatial equilibria. All the matricesin Eq. (E.12) are circulant and hence shares

the same set of eigenvectors. Thus, Ay is obtained from Eq. (E.12) as follows:

b =0
= ——— Vk € IC, E.15
(1 —xg) — xwy) a wy (E15)

A =

Q| =

where «;, wy, and wi are the kth eigenvalues of C, V, and A, respectively, with xy = 0 and
kr = 1forall k # 0. As wy = Q(Oy) and w,h{ = O%(©y) with {Oy }ex are the eigenvalues of
D because we assume G = (D) and A = Q/(D),

TQNO)  ®
and Ap = 0 where (@) = —%.

From Eq. (E.14), p > O for all a if all {A;} are positive except for Ag = 0. The denominator
of Eq. (E.16), Q)(©f), must be negative for all k because & is stable by assumption. Thus, we

see that p > 0if O (®) > 0 for all ® since ®; € (0,1) forall k € K.
Proposition 5 follows by noting

d/\k 2 o d@k d@k
o'(@) =Y ;= 00 (Op)—~ = —=
Ly “ak g k% N

m|| =i

From Lemma 5, {Oy }rcx are strictly decreasing in ¢. Thus, for p'(¢) > 0 (0'(¢) < 0), it is
sufficient that §'(®) < 0 (6'(®) > 0) for all @ such that Q(®) < 0.
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F Derivations

This section collects omitted derivations. The expression F, denotes the Jacobian matrix of

a vector-valued function f(x) with respect to , thatis, Fx = | f’] For example, V, = [32’]
Vo = [av, ], and W, = [aw7] Throughout, 7, @, ¢ and so on represent v;, w;, e; evaluated at

z. D denotes the row-normahzed proximity matrix.

F.1 General derivations

F.1.1 The benefit matrix

The indirect utility function v of a spatial model often reduce to the following implicit form:

s(xz,w)=0. (F.2)

The condition Eq. (F.2) represents, e.g., the general equilibrium conditions for a given x that
defines endogenous variable w (e.g., wages) other than x as an implicit function of . We
assume that Eq. (F.2) admits a unique solution of w at each x for v(x) to be well-defined.

Suppose s and v are continuously differentiable. Then, we have

Vi(z) = Vi(z) + Vi (z) Wy (), (E.3)
Wi (z) = —Sy(z) 'Sx(z), (F.4)
where Wy (z) is obtained by applying the implicit function theorem to Eq. (F.2).

Under Assumption C, all relevant matrices commute at * = & because they are real,
symmetric, and circulant at Z. Thus, V, = S3;1(Sy,Vy — V4, Sy) at 2.

Example 6. Eq. (F.2) is often given by

si(@, w) = wix; — Y myje; = (E.5)
jeL

where regional expenditure is e; = e(w;, x;) with some nonnegative function eand M = [m;;]
is the expenditure share matrix. For example, in the Krugman and Helpman models,

1-0
X;jW; i
mi]' = aat 1qilcjl_ . (F6)
YkeT XKWy Prj
In matrix form, we can write y — Me = 0 where y = (w;x;);cz. Then, in general,
S.(z) = diag[w] — (diag[Me] . Mdiag[e]MT) diag[z] ! — ME,, (E7a)

Su(x) = diag[z] + (¢ — 1) (diag[Me] M diag[e]MT) diaglw] ! — ME,.  (E7b)
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Suppose Assumption C. Suppose x = & and let @ be the uniform level of {w; } at Z. Then,
we have M = D at £ = &. Suppose the scalars €, and €, are chosen to satisfty E; = €,@I

and Ey, = el at &. Leté = e(@, %) and { = £=. We see that
S, = — ((z; —1)I+eD— z;DZ) , (F.8)
Sy = % <(1+C(0—1))I—ewD—C(U—l)D2>. (F.8b)

If e(w;, x;) = wjx;, then €x = €, = 1and { = 1, thereby Wy = (01 + (0 — 1)D)~'D. [ |

F.1.2 The payoff elasticity matrix with respect to local characteristics

In Eq. (E.12), X = [axailgfj)] = X, acts as X = — V1V, for z such that 2" 1 = 0. Thus, V, is of
interest. Z

For purely local characteristics (Example 5), since v;(x,a) = a;v;(x), it follows that
V, = diag[v(z)]. At &, we have V, = 31. Thus, X = —5V; 1.

For regional characteristics that affect trade flows, the payoff function and the market
equilibrium condition are, respectively, modified to v(x, a) = ¥(z, w, a) and s(z, w,a) = 0.
By applying the implicit function theorem, we see V, = Vo+ VW, =V, — VwS;UlSa. As

all matrices commute at & under Assumption C, it is equivalent to consider
A . - -1/ _
— (SwVe—VuSy) " (VuSa — SuVa) . (F.10)
Example 7. For the regional model by Redding and Rossi-Hansberg (2017), we have

1—0
xiaiwi (Pl]

Si(ZI}, w, a) = W;x; — =0. (F.ll)

1o, ¢~
JeT LkeT Xkkwy Pk
Thus, S, = — (diag[Me] — M diagle]M ") diag[a] ! = —Z (I — D?). See Section F.2.2. W
Example 8. For the Krugman model, we have

1—
xiwi U(Pij

Si(w, w, a) = W;X; — 1o
JeT LkeT XKWy Prj

e(wj, xj,a;) =0 (F.12)

where e maps the tuple (wj, x;,4;) to the regional expenditure. Then, we have S, = —ME,,
orS, = —¢,D at £ where ¢, = ae(gfj’ﬁ). See Section F.2.1. [ |

F.2 Model-specific derivations

We provide omitted derivations of the gain functions (), as defined in Section A.3, for the
examples in the main text. For derivations for other models mentioned in Sections 2.4

and 2.5, see Akamatsu et al. (2017), an earlier draft of the current paper.
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F.2.1 Krugman (1991) model

There are two types of workers, mobile and immobile, and their total masses are 1 and L,
respectively. © = (x;);cz is the distribution of mobile workers. Each worker supplies one
unit of labor inelastically.

There are two industrial sectors: agriculture (abbreviated as A) and manufacturing
(abbreviated as M). The A-sector is perfectly competitive and a unit input of immobile labor
is required to produce one unit of goods. The M-sector follows Dixit-Stiglitz monopolistic
competition. M-sector goods are horizontally differentiated and produced under increasing
returns to scale using mobile labor as the input. The goods of both sectors are transported.
Transportation of A-sector goods is frictionless, while that of M-sector goods is of an iceberg
form. For each unit of M-sector goods transported from region i to j, only the proportion
1/ arrives, where 7;; > 1 fori # jand 7; = 1.

All workers have an identical preference for both M- and A-sector goods. The utility of
a worker in region i is given by a two-tier form. The upper tier is Cobb-Douglas over the
consumption of A-sector goods C2* and that of M-sector constant-elasticity-of-substitution
(CES) aggregate CM with o > 1

CY = (]EZI /0 ! qﬁ(é)“fldé)”il, (F.13)

that is, u; = (CM)#(C*)1~# where i € (0,1) is the constant expenditure of the latter. With
free trade in the A-sector, the wage of the immobile worker is equalized, and we normalize
it to unity by taking A-sector goods as the numéraire. Consequently, region i’s expenditure
on the M-sector goods is given by e; = p(w;x; + I;) where [; denotes the mass of immobile
workers in region i.

In the M-sector, to produce g units, a firm requires « + Bq units of mobile labor. Profit
maximization of firms yields the price of differentiated goods produced in region i and
exported to j as p;; = %wirﬁ, which in turn determines gravity trade flow from j to i. That
is, when X;; denotes the price of M-sector goods produced in region i and sold in region j,
Xjj = m;je; where the share m;; € (0,1) is defined by Eq. (F.6) with ¢;; = T%.*". The proximity
matrix is thus [¢;j] = ['(%_‘7].

Given x, we determine the market wage w = (w;);c7 by the M-sector product market-
clearing, zero-profit, and mobile labor market-clearing conditions. These conditions are
summarized by the trade balance w;x; = } ;7 Xjj, or Eq. (F.5) with e(x;,w;) = u(wix; +1;).
By adding up Eq. (F.5) for the Krugman model, we see } ;-7 w;x; = %L, which constrains
the total income of mobile workers at any configuration . The existence and uniqueness of
the solution for Eq. (E.5) follow from standard arguments (e.g., Facchinei and Pang, 2007).
Given the solutioﬁn w(x) of Eq. (F.5), we have the indirect utility of mobile workers, which is

given by v; = A7 w;, where A; = Yo7 xpw; “dy;.
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Letl; =1= % foralli € Z. We have

Viegv(z) = %MT diag[z] ' — uM " diag[w] W, + diag[w] W, (F.14)
1 1
where Egs. (F.4) and (F.8) give Wy. By plugging 6 = V(zz_f;l) = land ey = €, = ptoEq. (E8),
_w _ Ay 2\ ! _ N2
W= (al uD — (¢ —1)D ) (yD D ) . (F.16)

Then, Egs. (F.15) and (F.16) imply

V = tVlogv(z) = %D + (1= pD) (¢1 - yD — (¢~ 1)D?) - (,0-D?), (F17)

or equivalently, V. = Q(D) where

_ K 1 o — @
Q(@) = m@—i— (1 — ]/l@) (;) 1_ ﬁ@_ E@Z . (F18)
— b~ —_—

(a) ®)

From Eq. (F.18) we have V = O’(D)~1()¥(D), where we define

11 > 1
04(©) = u (0_1 +;) ©® - <0”_1 +;) @, (F19)

12 (F.20)

e =1-to-
o

Remark 5. Using the Krugman model as an example, we discuss how economic forces
in a model are embedded in (). We recall that positive (negative) terms in () represent
agglomeration (dispersion) forces. In Eq. (F.18), (a) corresponds to the elasticity of price
index with respect to agents’ spatial distribution , (b) to the elasticity of payoff with respect
to nominal wage w, (c) to the elasticity of wage with respect to agents’ spatial distribution.
Here, (a) and the second term in (b) corresponds to the so-called cost-of-living effect through
price index; (a) is positive, i.e., it is an agglomeration force, as the price index in a region
becomes lower when more agents (firms) locate geographically close regions; the second
term in (b) (i.e., —u®) is negative because higher wage in a region implies higher goods
prices in its nearby regions. Also, (b) as a whole is positive, meaning that the payoff of a
region is increasing in wages even with the negative effect through price index. The last
component (c) includes both positive and negative terms; in its numerator, the first term
(4®) is demand linkage where firms’ profits rise when they are close to regions with high
total income, and the second term (—®?) is the market-crowding effect due to competition
between firms. The sign of (c) is ©-dependent; for example, it is negative when © is high (¢
is low) and positive otherwise. The denominator of (c) represents the general equilibrium
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effects through the so-called short-run equilibrium condition under given =, i.e., Eq. (E.5).
As OF is obtained by combining these components and collecting terms according to the
order of ©, these economic forces affect both the first- and second-order coefficients of QF.
Concretely, in Eq. (F.192), %@ corr;es frorzn (a), g@ comes from (b) x (c), _(17@2 comes
from (b) x (c), and —le@Z = — (”— + £ ) @2 comes from all three components while

o c(c—-1)
2
its leading term —%@2 comes from (b) x (c). Thus, by considering QO for a model, one
can examine the net effect of all economic forces in the model at once, and the net effect is
decomposed according to its spatial scale (i.e., the order of ©). u

Remark 6. To obtain OF for I = (I;);cz, we evaluate V; = —V,,S.1S; as A = %Vl. From
Example 8, S; = —uD. Also, V, = 05 logv(z) = Z(I— uD) and V; = 0. Thus,

Qh(@) = M >0 (F.21)
0 (0)
where c = %g = 177“9? > 0. It then follows that
1 0Y(0) cxO(1 — ud)
5(@) = -2 ) = ZE T FE) F.22
(©) a Q(0) a QHO) (F22)
Straightforward algebra verifies that &'(®) < 0 if Q%(®) > 0. |

F.2.2 Helpman (1998) and Redding and Sturm (2008) model

Helpman (1998) removed the A-sector in the Krugman model and assumed that all workers
are mobile, and introduced the housing sector (abbreviated as H). Each region i is endowed
with a fixed stock a; of housing. Workers” preference is Cobb-Douglas of M-sector CES
aggregate CM and H-sector goods CH, u; = (CM)#(CH)7, where u € (0, 1) is the expenditure
share of the former and vy =1 — pu € (0,1) is that for the latter.

There are two variants for assumptions on how housing stocks are owned: public landown-
ership (PL) and local landownership (LL). Helpman (1998) supposes PL in which housing stocks
are equally owned by all workers; the income of a worker in region i is the sum of the wage
and an equal dividend r > 0 of the total rental revenue in the economy. However, Ottaviano
et al. (2002), Murata and Thisse (2005), and Redding and Sturm (2008) assumed that housing
stocks are locally owned (i.e., LL). The income of a worker in region i is the sum of the wage
and an equal dividend of rental revenue in each region. In fact, the model by Redding and
Sturm (2008) is the LL version of the Helpman model.

Regarding the market equilibrium conditions, the only difference from the Krugman
model is regional expenditure ¢; on M-sector goods in each region:

[PL] e = p(w; +71)x, (F.23)
[LL] e; = W;x;. (F24)
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Also, the market wage is given as the solution for Eq. (F.5). For the PL case, we set r = 1 for
normalization. For the LL case, w(x) is uniquely given up to normalization. The indirect
utility function is, with A; =} ;c7 xjw}_a¢ji and r > 0,

A\ 77 B

[PL] v; = (;‘—) (wi +r)FATT, (E.25)
1
xi\ T

[LL] v; = (a—:) wh AT (F.26)

Leta; = 1foralli € Z. We compute that

\ <%MT diag[a] ! + VoW, — 'ydiag[:c]l) , (E27)
where [PL] V,=u <diag[w +r1]t—M" diag[w]*l) , (F.28)
[LL] Vo= u <I - MT> diag[w] !, (F.29)

and M is defined by Eq. (F.6). For the PL case, we obtain V = Q(D) with

K p(p—0)0(1-0)
_ F.
0(0) 7+U—1®+0—ﬂ®—(0—1)®2 (E.30)
where we compute W, from Eq. (F.7) with { = £ (z_‘;;rl), €x = _71, €y = W; we note that

wl;l — y under our normalization. Thus, for the PL case, we can choose QO and Q)" that
satisfy V = (’(D)~1Q¥(D) as follows:

by — H Hp+71)\ o [ H pty 2
0}O) = 7+(U_1+ - O (ot~ 7)€, (F.31)

2

c—1

e =1-Lo- @2 (F32)

o o

where we recall y +y = 1.
For the LL case, Wy is given in Example 6 and we obtain

u(l—0)o

_ H
QO) = —1+ 50+ e (F.33)
We can choose Qf and ()’ as follows:
QO =+ (I BT e (F.34)
oc—1 o ’
-1
@) =1+ %@. (F.35)

Remark 7. Definition 3 classifies canonical models based on the spatial scale of the “effective”
dispersion forces. The Helpman model with public landownership Eq. (F.31) has global
dispersion forces because c; < 0 under Assumption E. However, unlike the Krugman model,
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the global dispersion forces in the Helpman model are not “effective” in the sense that, under
any admissible values of p and o, this force does not stabilize the uniform distribution for
any level of transport costs. If we drop the local dispersion force ¢y < 0 from Qf, we have
€10 + ;02 > 0 for all © and & is always unstable. Thus, the only dispersion force in the
Helpman model that can stabilize & is its local dispersion force. |

Remark 8. Equilibrium is unique when yo = (1 — p)o > 1 (Redding and Sturm, 2008). For
both PL and LL, this condition implies that Qf(®) < 0 for all ® € (0, 1). |

Remark 9. The regional model in §3 of Redding and Rossi-Hansberg (2017) is a variant of
the Helpman model with LL, in which variable input of mobile labor depends on region i
(i.e., productivity differs across regions). The cost function of firms in region i is C;(q) =
w;(a + B;q). The market equilibrium condition for this case is, with a; = B}~ > 0, given by

1-0c
xia;w; " @i

1_
{7 Lkez kW P

si(:c,w) = Wix; — w]x] =0. (F.36)

The payoff function is given by Eq. (F.29) with A; = ) 7 xkakwifa(pk,-.
From Example 7, S, = =% (I— D) (I+ D) as ¢ = wx. Also, we have V, = Z1(I - D),

V, = g%D, and S, = Ube(D). AsV, =V, - V,S81S, and A = %Va = QH(D), we
compute
—-1)+00
0i(@) = I =D +0 .37

where ¢ = ZL > 0. This in turn implies

0N (O) cx(0c—1)+ 00
= - N T E.38
K@) =-70@) -7 e (F38)
where (@) is that for the LL case Eq. (F.35). If (1 — u)o > 1,6'(®) > 0 for all @. |

F.2.3 Pfliiger and Siidekum (2008) model

The Pfltiger-Stidekum model builds on Pfliiger (2004) and introduces the housing sector
(denoted by H). A quasi-linear upper-tier utility is assumed: u; = C* + jlog CM + -y log CH.

The production cost for a firmin i € Z is aw; + Bq. Then, w is given as follows:

4 bij

w; = ——(x;+ 1)). (E.39)
o i1 LkeT Prjk b
The indirect utility of a mobile worker in region i is
x; +1;
vi(x) = % In[A] — y1In % +w, (F.40)
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where A; = Yjez Pjixj, and /; and a; denote the mass of immobile workers and amount of
housing stock in region i, respectively. The nominal wage in region i is given by Eq. (F.39).
Letl; = l and a; = a for all i. Then, we see that V = %Qﬁ(D) with

Qﬁ(@):—HLLﬂt( il >® ”(1+L)@ (F41)

F.2.4 Allen and Arkolakis (2014) model

The Allen—Arkolakis model is a perfectly competitive Armington (1969)-based framework
with positive and negative local externalities. We abstract away all exogenous differences
in regional fundamentals. The productivity of region i is proportional to xi with & > 0,

representing positive externalities. The market equilibrium condition is

w;
si(x, w) = wix; — Z L (Pl] wjxj =0. (F.42)

10’0{0’1

With market wage w, we have v;(x) = xi_ﬁ wl-Ai”%1 with A; = Yz wy ¢ri. With
g <O, x? represents negative externalities from congestion. Here, we follow the original
study in terms of the sign of , while the main text uses 8 as the magnitude of this externality
to streamline exposition. We have V = (D)~ 10f(D) with

Qﬁ(@)):(a+ﬁ—1j“)+(rx+ﬁ+l_ﬁ>®, (F.43)

o
@) =(c+(c-1)0)(1-0). (F.44)

The case with no externalities (x = 0 and B = 0) reduces to the Armington (1969)

framework, and w = < 0. The intrinsic working of general equilibrium

e
effects induced by love for variety in the Armington model is in creating a dispersion
force, and it is in a sense “global” because it depends on ®. However, in the context of
net agglomeration incentive at the symmetry with nonzero spillovers, this force is mainly
related to the denominator (), and Q)f summarizes the net trade-off between agglomeration
and dispersion forces that govern the stability of .

Figure F.1 classifies spatial patterns and their stability under Assumption C, which can
be seen as a refinement of Figure I in Allen and Arkolakis (2014) under Assumption C. A
sufficient condition for the equilibrium uniquenessis « + < 0 (Range 3), which means there

is net local dispersion force and QF (@) < 0 for all ©. In Range 3, Z is the only equilibrium.

F.2.5 Krugman and Venables (1995) model

Krugman and Venables (1995) considers intermediate inputs. When we interpret the regional
share of manufactured good production as the state variable, the model is Type G. With

input share of manufactured good in production being «, Fujita et al. (1999), Appendix 14.1,
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Figure F.1: Uniqueness and stability of equilibria in the Allen-Arkolakis model.

derives a concise formula for (). Namely, in the case that “agricultural” good is produced

by a constant returns technology,
QD) =’ (D)7 ! (tx (1 + %) D—(1+ zx)ZDZ) (F.45)

with an appropriately defined )’, showing that the model is Type G. Also, if the “agricul-
tural” sector exhibits decreasing return, an extra local dispersion force (a term coI such that

co < 0) emerges, so that the model becomes Type LG (Fujita et al., 1999, Section 14.4).

F.2.6 Kucheryavyy et al. (2024) model

Kucheryavyy et al. (2024) considers a unified framework that nests Allen and Arkolakis
(2014) and Krugman (1991) as special cases. For this model in the symmetric two-region

economy, the sign of the utility gain w coincides with the following function of ©:
(@) = ~(1—a) + (1= (1= B)T +p)® — (a + (1~ (1 B)))n)@?, (F.46)

where the notations follow the original paper except for the transport cost index ©.

For deriving the above O, we note that, when evaluated at x = 1, V'(x) in Appendix
D of Kucheryavyy et al. (2024) is essentially a negative constant multiple of the (net) utility
gain, as the stability condition for the uniform distribution in their notation is V’(1) > 0 (see
their Appendix B.4).

As seen, the model is Type LG in its most general form. Importantly, the case («,, ) =
(1,1, B) corresponds to a Krugman-type model, as we observe Eq. (F.46) reduces to a func-
tion of the form ¢;® — ¢,®%. Also, & < land { =1 corresponds to the Allen—Arkolakis
framework, for which we confirm —(1 —a) < 0 represents a local dispersion force. It is
noted that Q%(1) = (1 — u)(1 — B). If u < 1, then Q¥(1) > 0, so that Of must have one and

one zero for ® € (0,1), so that & is stable only for low transport costs.
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