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Can dynamic forces of agglomeration generate spatial diversity, or do they

inevitably concentrate activity into a single core? We investigate the theo-

retical properties of Allen and Donaldson (2020) model, a dynamic spatial

framework featuring inter-generational externalities and endogenous mi-

gration. In a stylized multi-region economy, we show that the model yields

stable equilibrium paths only under single-core agglomeration, closely echo-

ing its static counterpart, the Allen and Arkolakis (2014) model. Although

oscillatory dynamics can, in theory, produce multi-centered outcomes, such

fluctuations may be less empirically plausible. Our results point to a key

challenge: how to reconcile dynamic stability with polycentric spatial pat-

terns observed in the real world?
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1 Introduction

Long-run evaluation of regional and urban policies is essential for addressing in-
equality, demographic change, and the resilience of local economies. To provide
credible guidance, spatial models need to account not only for the cross-sectional
distribution of economic activity but also for the dynamic interplay between ag-
glomeration and dispersion forces over time. A central mechanism is the feed-
back loop in which greater urban attractiveness draws more population, whose
presence further enhances productivity and amenities. Such processes can sus-
tain growth but also deepen fragility when fundamentals are weak.

Allen and Donaldson (2020) (henceforth AD) proposed a tractable dynamic
regional model that extends the static framework of Allen and Arkolakis (2014)
(henceforth AA) by incorporating forward-looking migration as well as inter-
generational agglomeration externalities. The model has since been applied to
a range of empirical settings. However, the theoretical implications of the AD

framework on “endogenous” spatial structure remain underexplored.
Endogenous spatial structures, or ex post regional asymmetries from ex ante

symmetric environments have been the main fascination of the economics of ag-
glomeration (Fujita and Thisse, 2013) after the seminal work of Krugman (1991).
In this literature, discussions have centered around how “endogenous” agglom-
eration and dispersion forces mediated by various types of transport frictions
can shape uneven spatial distribution of mobile factors (Proost and Thisse, 2019).
Here, “endogenous” forces, refer to all effects of the location of economic agents
relative to one another, or the “second nature” of Krugman (1993).

Crucially, it has been recognized in this literature that which endogenous dis-
persion mechanism a model embeds is not an innocuous choice as it can flip the
qualitative sign of policy counterfactuals. In static two-region spatial equilibrium
models, the effect of transport policy depends on the dominant dispersion force.
In Helpman (1998)-type settings (including AA) that emphasize local congestion
externalities within each location, lower trade costs shift population toward pe-
ripheral areas. Here, transport infrastructure acts as an equalizing force. By
contrast, in Krugman (1991)-type frameworks in which immobile factors com-
bined with market crowding produces a dispersion force across locations, the
same policy can intensify concentration. This occurs through the “siphoning” ef-
fect, where improved links draw activity from peripheral regions into core hubs,
harming lagging regions.

Figure 2 illustrates the difference between the two types of models in symmet-
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(A) Krugman-type model
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(B) Helpman-type model
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(C) Krugman-type model with asymmetry
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(D) Helpman-type model with asymmetry

Figure 1: Spatial equilibria in Krugman- and Helpman-type frameworks

Note: A stylized two-region example. Figures taken from Akamatsu et al. (2024). The horizontal
axis ϕ ∈ (0, 1) denotes the trade freeness, with 0 indicating autarky and 1 indicating free trade.

ric and asymmetric two-region settings. Agglomeration occurs if transport costs
are high (ϕ small) in the Krugman-type model (Fig. 1A), and the converse is true
for the Helpman-type model (Fig. 1B). The qualitative contrast does not disap-
pear even when asymmetries in exogenous fundamentals are present (Figs. 1C
and 1D).

These interpretative tensions can be amplified in dynamic contexts, especially
when inter-generational externalities are present. Short-run gains can be damp-
ened, amplified, or even reversed as future cohorts endogenously adjust their
location decisions. Clarifying the conditions under which each mechanism pre-
vails is essential, as this can substantially affect the interpretation of policy out-
comes in quantitative exercises.

This study takes a step toward clarifying these dynamics by analyzing the
equilibrium structure of the AD model in a stylized setting. Following the agenda
the author proposed in Akamatsu et al. (2017, 2024), we analyze a stylized multi-
location version of the AD model on a circular geography to distill the workings
of endogenous forces. Our contributions are the following:
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(B) Helpman-type model

Figure 2: Spatial distributions in a symmetric four-region economy.

1. We derive closed-form conditions in the space of two policy-relevant pa-
rameters: the iceberg trade-cost index and the elasticity of interregional
migration (“migration resistance”);

2. We show that, outside knife-edge cases, the AD model either behaves like
its static AA counterpart, or generates oscillations in city sizes, which would
be less relevant in reality.

While simplified by design, this analysis helps clarify how dynamic feed-
backs interact with dispersion forces to shape long-run spatial configurations.
Our findings suggest that the introduction of inter-generational externalities and
migration dynamics alone does not fundamentally alter the qualitative behavior
of static models, unless one is willing to tolerate less plausible oscillatory out-
comes. This highlights the remaining importance of theoretical groundwork of
spatial models, especially for applied policy evaluation in environments under-
going rapid structural change.

This study is motivated by Akamatsu et al. (2017, 2024), which emphasizes
the distinction between dispersion forces that act within locations and those that
arise across them. Specifically, we can theoretically identify two types of disper-
sion forces:

• Local dispersion force (Helpman-type dispersion mechanisms) stems from
congestion within each location. The representative origin of such forces
is the inelastic supply of land. Because it intensifies with point-wise pop-
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(A) Krugnam-type model (B) Helpman-type model

Figure 3: Spatial distributions in a square economy with uniform fundamentals.

ulation density, lowering transport costs increases its relative importance
and hence foster local spreading of economic agglomerations.

• Global dispersion forces (Krugman-type dispersion mechanisms) originates
from market crowding across space combined with immobile factors. Each
agglomeration casts a geographical “shadow” that repels rivals (cf. Horn-
beck et al., 2024), promoting multi-centric patterns.

In particular, in multi-location settings beyond two, the two mechanisms im-
ply qualitatively different spatial implications. For illustration, Figure 2 com-
pares a Krugnam-type model and a Helpman-type model in a symmetric four-
location circle, where the horizontal axis is the freeness of trade. Multiple cores
can emerge only in the former, whereas the latter features only a single-peaked
spatial distributions. This qualitative difference persist even when we consider
two-dimension setting (Fig. 3).

Because both dispersion mechanisms operate in reality, a model that empha-
size only one may risk misleading policy prescriptions. As a quantitative exam-
ple, Figure 4 from Sugimoto et al. (2025) illustrates the observed and counterfac-
tual population changes across Japanese regions, with a focus on the long-run
impact of highway infrastructure. Panels (A) and (B) simulate the counterfactual
scenario in which highways are removed (i.e., transport costs go up), based on
a plain Helpman-type model and a Helpman-type plus Krugman-type disper-
sion mechanism, respectively. While neither model fully reproduces the actual
evolution of Japanese population patterns, a striking contrast emerges between
the two counterfactual scenarios. In (A), there is a concentration toward the core
when highways are removed. This is broadly consistent with Fig. 1B when trans-
port cost goes up (ϕ decreases), but somewhat contradicts to the actual phenom-
ena in the past decades in Japan. In contrast, in (B), which combines both local
and global dispersion forces, yields the opposite result: the same removal of
highways induces a population shift toward peripheral regions. This qualita-
tive reversal illustrates how the nature and composition of dispersion forces can
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(A) Helpman-type (B) Helpman + Krugman

Figure 4: Counterfactual population changes of Japanese regions under counter-
factual removal of highways (reproduced from Sugimoto et al. (2025)).

fundamentally shape counterfactual outcomes in quantitative spatial models.
Without exogenous heterogeneity, Helpman-type frameworks do not gen-

erate polycentric equilibria nor concentration towards the core when transport
costs fall. The present study reveals that this property persists in the AD frame-
work, a dynamic version of the AA framework. The agglomeration behavior we
obtain for the dynamic framework by AD resembles static Helpman-type frame-
works in which stable agglomeration pattern features only mono-centric config-
urations.

2 The AD Model

For self-containedness, the AD framework is briefly summarized below. One can
just skip this section if they are familiar with the framework.

Basic settings. Consider a finite set of locations N ≡ {1, 2, . . . , N} and discrete
time periods t = 0, 1, 2, . . .. Unless otherwise noted, variables without the time
index is interpreted to belong to period t.

A continuum of homogeneous agents (i.e., workers/consumers) exists in this
economy. Each agent lives for two periods: a youth period and an adulthood
period. Only adult consumers engage in consumption and labor supply. In
their adulthood, each consumer supplies one unit of labor inelastically. At ev-
ery point in time, we normalize the total number of adult consumers to L > 0.
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Alternatively, we assume that upon exiting the economy, each cohort of adult
consumers is immediately replaced by the same number of young consumers,
who are newly born across all locations. An interesting model that accounts for
fertility dynamics is discussed in Allen and Donaldson (2022).

Let Lit denote the number of adult consumers residing in location i ∈ N at
time t, and let the vector Lt ≡ (L1t, L2t, . . . , LNt)

⊤ ∈ RN
≥0 represent the population

distribution. The set of all feasible population distributions at each period is de-
noted by L ≡ {Lt ∈ RN

≥0 | ∑i∈N Lit = L}. Commuting across locations is not
allowed, so that all agents supply labor in the same location where they reside.

Each location i ∈ N produces a unique variety of a differentiated good as in
Armington (1969). Production is perfectly competitive, and each firm at location
i uses only labor, supplied inelastically by local residents, as an input. Goods
trade between locations is subject to iceberg transport costs.

As will be specified later, the AD model assumes that externalities arise de-
pending on local population sizes. Let Ai denote the productivity and ui the
amenity level of location i. Both are assumed to depend on the number of resi-
dents at that location, potentially increasing or decreasing with population.

Firms. At each location i ∈ N , firms produce and supply goods under perfect
competition. Labor is the sole input. Under the assumption, the factory-gate
price pi of the good produced at location i equals its marginal cost: pi = wi/Ai.
Here, Ai denotes the aggregate marginal productivity of labor at location i.

To capture inter-generational externalities, Ai depends on t, and Ai = Ait is
assumed to depend on the number of workers at location i in the current and
previous periods:

Ait(Lit, Li,t−1) = ĀiL
α1
it Lα2

i,t−1 (A)

where Āi > 0, α1 ≥ 0, and α2 > 0 are given constants.
The parameter α1 captures the strength of the positive externality arising from

current population agglomeration: the greater the local concentration of workers,
the higher the productivity of labor at that location. The parameter α2 represents
the strength of the externality due to past agglomeration, implying that higher
population in the previous period raises current productivity. Finally, Āi is the
innate productivity coefficient of region i.

Consumers/Workers. Only adult agents engage in consumption. The utility of
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a consumer residing in location i ∈ N is given by

Wi = ui(Li)
(

∑
j∈N

q
σ−1

σ
ji

) σ
σ−1

. (1)

Here, qji denotes the quantity consumed of the good variety produced in location
j ∈ N , and σ > 1 is the elasticity of substitution across varieties. Let pji denote
the price at which the variety produced in j is sold to consumers in i, and let
wi ≥ 0 denote the wage income of a consumer in location i. Maximizing utility
subject to the budget constraint wi = ∑j∈N pjiqji yields the following demand for
each variety:

qji =
p−σ

ji

P1−σ
i

wi, where Pi =

(
∑

k∈N
p1−σ

ki

) 1
1−σ

. (2)

Given a nonzero price vector p ̸= 0 and wage rate vector w, the indirect
utility of a consumer residing in location i is:

Wit = uitwitP−1
it , (3)

where uit represents the amenity level in location i at time t.
To incorporate externalities, we assume that the amenity level uit at location i

and time t depends on the number of workers currently and previously residing
there, Lit and Li,t−1:

uit(Lit, Li,t−1) = ūiL
β1
it Lβ2

i,t−1 (u)

where ūi > 0, β1 < 0, and β2 > 0 are fixed parameters.
The signs of β1 and β2 differ. The parameter β1 captures negative current ex-

ternalities (e.g., traffic congestion or increased land prices) that degrade living
conditions as population density rises. In contrast, β2 reflects positive external-
ities stemming from past agglomeration, such as infrastructure accumulation or
urban amenities, and is assumed to be strictly positive.

Goods trade. Delivering one unit of a good from location i to location j requires
shipping τij > 1 units from i to j ̸= i and τii = 1 for all i. The price at which the
variety produced in i is sold to consumers in j is pij = piτij. In turn, the value of
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trade from location i to location j, denoted Xij, is

Xij = τ1−σ
ij

(wi

Ai

)1−σ
Pσ−1

j wjLj, . (4)

From the setup so far, this price index can be expressed as:

Pj =
(

∑
k∈N

(wk
Ak

)1−σ
dkj

)1/(1−σ)
, (5)

where dkj ≡ τ1−σ
kj ∈ (0, 1].

Location Choice. Working-age consumers are assumed to choose their resi-
dential location. The utility from migrating from location i to location j using a
migration resistance parameter µij. That is, Wij ≡ ϵijWj/µij, where ϵij captures
idiosyncratic preferences that are not explained by the deterministic component
of the model (Wj). Consumers choose their location in the next period by maxi-
mizing this idiosyncratic utility.

The idiosyncratic component ϵij follows an i.i.d. Fréchet distribution with
shape parameter θ > 0. Under this assumption, the probability that an indi-
vidual in location i chooses to move to location j is given by:

Sijt =

(
Wjt/µij

)θ

∑k∈N (Wkt/µik)
θ

. (6)

The parameter θ reflects the degree of preference homogeneity across individ-
uals. As θ → 0, location choice becomes entirely random and insensitive to W,
representing maximum heterogeneity. As θ → ∞, agents become homogeneous
and choose the location with the highest deterministic utility.1

The number of migrants from location i to location j is then:

Lijt = SijtLi,t−1 =

(
Wjt/µij

)θ

∑k∈N (Wkt/µik)
θ

Li,t−1. (7)

Intertemporal equilibrium. The equilibrium conditions consist of the follow-
ing, where we make the time index explicit:

• Zero-profit condition for firms. At each location i, the total revenue of
firms equals the total wage payments to consumers residing there: witLit =

1Such randomness is isomorphically represented as the consumption of nontraded goods
(Behrens and Murata, 2021).
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∑j Xijt. Substituting from Eq. (4), we obtain:

wσ
itL

1−α1(σ−1)
it = ∑

j
KijtL

β1(σ−1)
jt W1−σ

jt wσ
jtLjt (8)

• Goods market clearing. Consumers spend all of their income on consump-
tion: witLit = ∑j Xjit. From Eq. (4), this gives:

w1−σ
it Lβ1(1−σ)

it Wσ−1
it = ∑

j
KjitL

α1(σ−1)
jt w1−σ

jt , (9)

where Kijt ≡

 τij

ĀitL
α2
i,t−1ūjtL

β2
j,t−1

1−σ

. (10)

These two equations jointly express that the total flow of payments across
the economy is conserved.

• Migration equilibrium. The population at location i in period t equals the
sum of incoming migrants from all other locations: Lit = ∑j Ljit. Using
Eq. (7), this can be written as:

LitW−θ
it = ∑

j
µ−θ

jit Π−θ
jt Ljt−1, (11)

where Πit ≡ E
[
maxj Wijt

]
=
(
∑k(Wkt/µikt)

θ
)1/θ.

3 Analysis

3.1 Steady-state equilibrium and its stability

The dynamics of the population distribution L are governed by the market and
migration equilibrium conditions Eqs. (8) to (11). Specifically, given the popu-
lation distribution in the previous period Lt−1, one can solve the current-period
market and migration equilibrium conditions simultaneously to obtain Lt. This
defines a discrete-time dynamical system of the form Lt−1 7→ Lt.

Let F(·) denote the operator that maps Lt−1 to Lt through the equilibrium
conditions. Then the system can be written as:

Lt = F(Lt−1). (12)

10



The operator F is implicitly defined by the following equilibrium conditions
that summarizes Eqs. (8) to (11):

z1i(wt, Lt, Lt−1) = witLit − ∑
k∈N

MiktwktLkt = 0, (13)

z2i(wt, Lt, Lt−1) = Lit − ∑
k∈N

SiktLkt−1 = 0, (14)

where

Mijt ≡
KiktL

α1(σ−1)
it w1−σ

it

∑l∈N KlktL
α1(σ−1)
lt w1−σ

lt

, Sijt ≡
µ−θ

ikt Wθ
it

∑l∈N µ−θ
lkt Wθ

lt

, (15)

and Kijt is defined by Eq. (10).
We are particularly interested in steady-state equilibria that satisfy

L∗ = F(L∗), (16)

and in analyzing their stability under the discrete-time dynamic (12).
Local stability of such an equilibrium can be determined by the eigenvalues

{ fk} of the Jacobian matrix ∇F(L∗). Specifically, if every eigenvalue satisfies
max{| fk|} < 1, then the steady-state is locally stable. Otherwise, it is unstable.
To see this, consider a small perturbation ϵt−1 around the fixed point such that
L̃t−1 ≡ L∗ + ϵt−1. The subsequent evolution of the state is then given by

L̃t = F(L̃t−1) ≈ F(L∗) +∇F(L∗)ϵt−1 = L∗ +∇F(L∗)ϵt−1. (17)

Because ϵt = L̃t − L∗, in a neighborhood of the fixed point L∗, the dynamics of
the perturbation follow:

ϵt = ∇F(L∗)ϵt−1. (18)

If ϵt → 0 as t → ∞ for any sufficiently small initial perturbation, then the fixed
point L∗ is stable. This occurs if and only if all eigenvalues of ∇F(L∗) have
modulus strictly less than 1.

The Jacobian matrix ∇F(L) can be analytically obtained by totally differenti-
ation of the equilibrium system described above, as shown in Appendix A.

Each eigenvector ϵ of ∇F(L∗) satisfying ∑i∈N ϵi = 0 corresponds to a feasi-
ble migration pattern, and the associated eigenvalue represents the amplification
factor of that migration pattern from period t − 1 to t.
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Figure 5: The four-region circular economy.

Compared to continuous-time adjustment dynamics as considered in static
spatial models for equilibrium refinement, a key distinction in this discrete-time
setting is that the sign of the eigenvalue also carries important meaning. Even
when the modulus is less than one (implying decay), a negative eigenvalue im-
plies that the associated perturbation oscillates in sign over time.

For instance, in a symmetric two-location model, a small perturbation around
the symmetric equilibrium L̄ ≡ (L/2, L/2) can be written as L̄ + ϵ × (1,−1) =

(L/2 + ϵ, L/2 − ϵ), where (1,−1) is an eigenvector. If the eigenvalue is f , in
the next period, it evolves into (L/2 + f ϵ, L/2 − f ϵ). If f < 0, the ranking of
population sizes between the two regions alternates over time, that is, oscillation
occurs. Whether such oscillatory dynamics occur in practice is an interesting
empirical question, but from the standpoint of quantitative policy analysis, the
emergence of oscillations may pose interpretative or computational challenges.

To assess local stability of a stationary equilibrium L∗, one must derive the
eigensystem of ∇F(L∗) at the steady-state equilibrium L∗. In general, however,
analytical characterization of L∗ is infeasible under asymmetric geographies. In
the following analysis, we focus on symmetric spatial settings to focus on the
role of endogenous forces in the AD model.

3.2 Four-location circular economy

Below, we assume a circular four-location geography. This system provides a
minimal yet sufficient setting to investigate the essential features of spatial mod-
els of agglomeration. As Matsuyama (2017) puts it, “it is the smallest number in
which a different region can have different neighbors, even though they are all
symmetrically located.” Notably, three is not enough. The circular four-location
system is particularly suitable for identifying whether the model admits multi-
ple stable equilibria, and if so, whether such equilibria exhibit a multi-core spa-
tial pattern (in which multiple large cities emerge) or a monocentric pattern (in
which a single dominant mega-region forms).

Figure 5 illustrates the four-location circe. All locations are placed equidis-
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Dispersed Multi-core Monocentric

Figure 6: Schematic diagram of all possible equilibrium patterns in a symmetric
circular economy with four locations.

tantly on the unit circle. In the AD model, assuming spatially uniform innate
amenity levels Āi and productivity levels ūi, the only source of heterogeneity
across locations lies in their relative positions on the transportation network. In
the circular four-location system, all locations are symmetric in this spatial sense
as well.

In this setting, the dispersed pattern in which consumers are evenly distributed
across all locations, L̄ = [l, l, l, l]⊤ with l = L/4, is a trivial equilibrium solution.

Figure 6 presents schematic illustrations of all possible equilibrium configura-
tions in the symmetric four-location circular system (see, e.g., Ikeda et al., 2012).
The size of the circles in the diagram represents the relative population size at
each location. Each illustrated equilibrium exhibits mirror symmetry with re-
spect to a dashed axis.

The distance between two locations in the circular system is defined as the
shortest arc length along the circle, and is given by:

tij = min
{
|i − j|, 4 − |j − i|

}
. (19)

The iceberg trade cost parameter τij between locations i and j is assumed to
take the form τij = τtij , where τ > 1 is a global iceberg cost parameter. The closer
τ is to 1, the more frictionless is trade across locations.

Migration resistance µij is similarly assumed to be distance-dependent, with
µij = µtij for some global parameter µ > 1. As with trade, the closer µ is to 1, the
more freely agents can move between locations.

Under these assumptions, we define two spatial discount matrices, D = [dij]

and E = [eij], where the (i, j)-th entries are given by dij = τ1−σ
ij = τ(1−σ)tij and
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eij = µ−θ
ij = µ−θtij , respectively. The matrix D captures the trade frictions be-

tween regions, while E represents the resistance to migration across regions.
For analytical convenience, we define the trade freeness r ∈ (0, 1) and the mi-

gration freeness s ∈ (0, 1) as follows:

r = τ(1−σ), s = µ−θ. (20)

Using these definitions, the matrices D and E can be simply rewritten as:

D =


1 r r2 r
r 1 r r2

r2 r 1 r
r r2 r 1

 , E =


1 s s2 s
s 1 s s2

s2 s 1 s
s s2 s 1

 . (21)

As r approaches 1, the global trade cost τ becomes close to 1, corresponding
to a nearly frictionless goods market across locations. Likewise, s approaching
1 implies a low migration resistance, i.e., a highly mobile population. In the
analysis that follows, we examine how changes in the economy-wide trade and
migration costs (equivalently, in the parameters r and s) affect the spatial ag-
glomeration patterns that emerge in equilibrium.

3.3 Stability of the dispersed equilibrium

We now consider the conditions under which the dispersed equilibrium L̄ =

[l, l, l, l] (l = L/4) is stable. We investigate how the population distribution
evolves under the AD model as the degrees of trade freeness r and migration
freeness s vary. As discussed in Section 2, the stability of the dispersed equilib-
rium L̄ can be determined by analyzing the eigenvalues f of the Jacobian matrix
∇F(L̄) that governs the inter-temporal dynamics.

Due to the special structure of the spatial discount matrices D and E, the
eigenvalue analysis of ∇F(L) becomes tractable. Specifically, the eigenvalues of
∇F(L̄) can be expressed in terms of those of the spatial discount matrices. To this
end, define

Tk(x) ≡


1 if k = 0

C(x) if k = 1, 3

C(x)2 if k = 2

with C(x) ≡ 1 − x
1 + x

. (22)

Then, the eigenvalues of D and E are cleanly obtained as follows:

14



Lemma 1. Let χk and λk denote the k-th eigenvalues (k = 0, 1, 2, 3) of the normalized
spatial discount matrices D̄ ≡ (1 + r)−2D and Ē ≡ (1 + s)−2E, respectively, in the
circular four-location system. Then, χk = T(r) and λk = T(s). For k ̸= 0, both χk and
λk are strictly decreasing functions of r ∈ (0, 1) and s ∈ (0, 1), respectively. Moreover,

0 < χ2 < χ1 = χ3 < χ0 = 1 and 0 < λ2 < λ1 = λ3 < λ0 = 1 (23)

for any fixed (r, s). The corresponding (normalized) eigenvectors are:

ϵk ≡


⟨1, 1, 1, 1⟩ if k = 0

⟨1, 0,−1, 0⟩ or ⟨1, 1, 0, 0⟩ if k = 1, 3

⟨1,−1, 1,−1⟩ if k = 2

(24)

Here, for a vector v, ⟨v⟩ denotes the normalized vector v/∥v∥.

The eigenvector corresponding to k = 0, ⟨1, 1, 1, 1⟩, represents perturbations
in which the population increases uniformly across all regions. Since the total
population is fixed, this direction is irrelevant to the stability analysis.

The eigenvectors corresponding to k = 1 (and k = 3) represent migration
patterns associated with the formation of a monocentric distribution, as illustrated
in Fig. 2B. On the other hand, k = 2 corresponds to a polycentric (more specifically,
duo-centric) distribution. We henceforth focus on k = 1, 2.

Using the eigenvalues {χk} and {λk}, we can explicitly express the eigen-
values (i.e., the growth rates of perturbations) of ∇F(L̄) along the monocentric
(k = 1) and polycentric (k = 2) directions.

Lemma 2. The k-th eigenvalue fk of ∇F(L̄) is given by fk =
h♯k
h♭k

, where:

h♯k = α2Ak + β2 +
λk

θ(1 − λ2
k)

, (25)

h♭k = −α1Ak − β1 + Bk +
1

θ(1 − λ2
k)

, (26)

Ak =
χk + (σ − 1)(1 + χk)

1 + (σ − 1)(1 + χk)
∈ (0, 1), Bk =

1 − χk
1 + (σ − 1)(1 + χk)

> 0. (27)

The eigenvector corresponding to fk is given in Eq. (24).

Proof. See Appendix A.

Note that the terms involving λk represent mechanisms related to migration
frictions while those involving χk correspond to trade frictions. If all externalities
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Figure 7: Typical shape of eigenvalue functions f .

Note: Red: monocentric direction ( f1). Blue: polycentric direction ( f2). The dispersed equilib-
rium is unstable if either of the curves are outside the gray region. We set (α1, β1, α2, β2, σ, θ) =
(0.7,−0.4, 0, 0, 8, 6) and s = 0.5.

are turned off (α1 = α2 = β1 = β2 = 0), we have

fk =
λk

θ(1 − λ2
k)Bk + 1

∈ (0, 1).

because λk ∈ (0, 1) and Bk > 0. This shows that the dispersed equilibrium L̄ is
stable for all admissible (r, s). That is, in the absence of externalities, endogenous
agglomeration due to instability cannot arise.

3.4 Agglomeration from the dispersed equilibrium

If there are externalities, the dispersed equilibrium can become unstable, and
endogenous agglomeration can occur. In this section, we use the eigenvalues
{ fk} derived in the previous section to characterize the agglomeration proper-
ties of the AD model. As discussed earlier, agglomeration from the dispersed
state occurs when the absolute value of an eigenvalue fk (k = 1, 2) crosses the
unit threshold: that is, when | fk| exceeds 1. In particular, if | f1| exceeds 1 first,
agglomeration proceeds in the monocentric direction; if | f2| does, agglomeration
occurs in the polycentric direction.

First, note that under σ > 1, 0 < χ < 1, and 0 < λ < 1, we have Ak > 0
and Bk > 0, which implies that h♯k > 0 for all parameter values. Meanwhile, the
negative terms in h♭k all involve α1. Therefore, regarding the sign of fk, we obtain
the following observation:

• If α1 = 0, then fk > 0.

• If α1 ̸= 0, then fk < 0 can occur for certain combinations of (α1, β1) that
lead to h♭k < 0.
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In regions where fk < 0, the system exhibits oscillatory dynamics, leading ei-
ther to agglomeration or reversion to dispersion through non-monotonic paths.
It is recalled that the parameter α1 reflects the strength of contemporaneous ag-
glomeration effects: its influence is independent of past agglomeration. Hence,
when α1 is sufficiently large relative to β1, oscillatory behavior may arise—an
outcome that is arguably less realistic in empirical settings, as population ag-
glomeration usually proceeds monotonically over time.

Next, observe the following comparative statics: since Ak increases and Bk

decreases with respect to χk, we deduce that fk is monotonically increasing in χk

and hence monotonically decreasing in r. Indeed,

∂h♯k
∂χk

= α2
∂Ak
∂χk

,
∂h♭k
∂χk

= −α1
∂Ak
∂χk

+
∂Bk
∂χk

. (28)

Since ∂h♯k
∂χk

> 0 and ∂h♭k
∂χk

< 0, and assuming h♭k > 0, it follows that

∂ fk
∂χk

=
1
h♭k

∂h♯k
∂χk

−
h♯k

(h♭k)
2

∂h♭k
∂χk

> 0. (29)

Based on this result, we establish the following proposition regarding the ef-
fect of trade freeness r on agglomeration patterns.

Proposition 1. Suppose that for some k, | fk| exceeds 1 as a result of changes in r.

(a) If fk < 0, increasing r induces agglomeration in the polycentric (duo-centric)
direction.

(b) If fk > 0, decreasing r induces agglomeration in the monocentric direction.

Proof. From Lemma 1, we have χ2 < χ1. As r increases (i.e., χ decreases), the first
instability arises in f2, whose eigenvector is z2 = ⟨1,−1, 1,−1⟩, corresponding
to the polycentric direction. Conversely, as r decreases (i.e., χ increases), the first
instability arises in f1, with eigenvectors ⟨1, 0,−1, 0⟩ or ⟨1, 1, 0, 0⟩, corresponding
to the monocentric direction. For illustration, Figure 7 shows typical eigenvalue
trajectories fk(r), including those with negative values.

This result implies the following: if the dispersed equilibrium loses stability
and agglomeration proceeds monotonically (i.e., without oscillations), then the
agglomeration must occur in the monocentric direction. This finding is similar to
the static AA model as discussed in Akamatsu et al. (2017, 2024). This is natural
because the AD framework is its dynamic extension.
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(A) −1 < f1 < 1 (B) −1 < f2 < 1 (C) Shape of f1

Figure 8: Regions where the modulus of f1 and f2 are less than 1

Note: We set (α1, β1, α2, β2, σ, θ) = (0.7,−0.4, 0, 0, 8, 6).

4 Numerical Examples

Numerical examples illustrate how each model parameter influences the behav-
ior of the system.

4.1 Stability Region of the Dispersed Equilibrium

Figures 8A and 8B illustrate the regions in which the modulus of the eigenvalues
f1 and f2 remain below 1. The horizontal axis represents the degree of trade
freeness r, and the vertical axis represents the degree of migration freeness s. In
each panel, the red region corresponds to 0 < fk < 1, and the blue region to
−1 < fk < 0. Each eigenvalue tends to become negative in regions where trade
freeness is low and migration freeness is high.

The parametric regions where eigenvalues are negative correspond to cases
where the dispersed equilibrium becomes unstable and oscillatory dynamics
emerge. Figure 9 overlays the two subfigures from Fig. 8. The dispersed equilib-
rium L̄ is stable in the regions labeled (a), (b), and (c), where the two individual
stability regions intersect.

For (r, s) such that satisfy both f1 ∈ (−1, 1) and f2 ∈ (−1, 1), the dispersed
equilibrium remains stable. If (r, s) slowly vary and we cut the boundary of this
region, instability occurs and nontrivial spatial patterns emerges.

As shown in Fig. 9, the ways in which the dispersed equilibrium L̄ loses sta-
bility are diverse. The possible directions in which instability arises are indicated
by black arrows in the figure.

Region (c) (the red region). Instability of L̄ occurs when both r and s decrease.
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Figure 9: Stability region

In this case, instability arises as f1 exceeds 1. This leads to a non-oscillatory shift
in the population distribution toward a monocentric pattern.

Region (b) (the purple region). Instability of L̄ occurs in two ways:

• If instability occurs as r increases, it is due to f1 becomes smaller than −1.
In this case, the population distribution still follows the monocentric direc-
tion but exhibits oscillatory dynamics. That is, if region 1 initially becomes
dominant, it is subsequently replaced by region 3, and so on in alternation.

• If instability occurs as r decreases, it results from f2 exceeding 1. This leads
to a monotonic transition toward a polycentric pattern, for example, a grad-
ual concentration in regions 1 and 3. However, this case only arises in a
narrow region of the parameter space.

It should be noted that region (b) is surrounded by unstable regions, implying
that this region may be less relevant.

Region (a) (the blue region). Instability of L̄ occurs occurs in two ways:

• If instability arises in the upper part of the region (i.e., for high s), it is due
to f2 going below −1. In this case, the population distribution moves in the
polycentric direction, but in an oscillatory fashion. For instance, if regions
1 and 3 initially become dominant, they are later replaced by regions 2 and
4, and so on in alternation.

• If instability occurs in the lower part (i.e., for low s), it results from f1 going
below −1, leading to oscillatory dynamics in the monocentric direction.

In summary, if agglomeration should occur without oscillation, it generally
occurs only in the monocentric direction. Although stable transitions in the poly-
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(A) (0.7,−0.3, 0, 0) (B) (0.7,−0.5, 0, 0)

(C) (0, 0, 0.3, 0) (D) (0, 0, 0, 0.2)

Figure 10: Effects of varying (α1, β1, α2, β2) with (σ, θ) = (8, 6)

centric direction are theoretically possible, they arise only in a narrowly confined
region.

4.2 Changes in Stability due to Parameter Variations

This subsection examines how changes in the model parameters affect the stabil-
ity region. Figures 10A and 10B show results for fixed α1 = 0.7, with β1 varied
between −0.3 and −0.5.

The parameter α1 captures the strength of contemporaneous agglomeration.
That is, the force generating new agglomeration regardless of past distributions.
As α1 increases relative to β1, the region in which the eigenvalues are negative
expands. Moreover, even in regions where eigenvalues are positive, an increase
in α1 contributes to instability by amplifying the negative terms in the denomi-
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nator of the eigenvalue expressions.
In contrast, β1 represents the strength of contemporaneous dispersion. In-

creasing β1 enlarges the region in which the eigenvalues are positive, and thereby
expands the overall stability region. Decreasing β1 relative to α1 enlarges the re-
gion where eigenvalues are negative. As seen in Fig. 9, appropriate settings of
α1 and β1 can produce multiple stable regions, with instability arising from both
increases and decreases in trade costs.

The parameters α2 and β2 measure the effects of agglomeration at the previ-
ous period t − 1 on current location utility. In other words, they increase persis-
tence, or the inertia of spatial agglomeration from the previous period. Accord-
ingly, as shown in Figs. 10C and 10D, the system tends to exhibit only monocen-
tric agglomeration (corresponding to region (a) in Fig. 9).

5 Concluding remarks

This paper has explored the agglomeration properties of the AD model, a dy-
namic spatial framework that incorporates inter-generational agglomeration ex-
ternalities and endogenous migration. With the properties of its static counter-
part (the AA model) in mind, we examined whether similar structural features
persist once dynamic feedback and migration are introduced. Using a stylized
environment, we showed that the AD model also yields stable equilibrium tra-
jectories only in the form of single-core agglomeration, provided inter-temporal
oscillations are excluded. In this sense, the dynamic framework largely inherits
the qualitative behavior of its static version, including the monotonic tendency
toward spatial dispersion as transport costs fall.

The analysis presented here is deliberately based on a simplified setting, de-
signed to isolate the model’s core mechanisms. While the original AD study con-
siders richer environments (asymmetric geographies) for quantitative applica-
tions, our focus has been on clarifying the theoretical behavior of the model in a
transparent setting.

Our results suggest that the AD model can, in principle, generate polycen-
tric outcomes through oscillatory dynamics. However, the empirical relevance
of such fluctuations remains uncertain. In applied contexts where stability and
tractability are essential, this may limit the model’s effectiveness in capturing the
multi-centered spatial patterns observed in real-world economies.

Nonetheless, the AD framework represents an important step toward bridg-
ing static and dynamic approaches to spatial analysis. It offers a coherent frame-
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work for studying how localized externalities accumulate over time and influ-
ence interregional outcomes. Our contribution complements this broader re-
search agenda by highlighting the specific conditions under which the dynamic
model replicates, or departs from, the qualitative properties of its static counter-
part.

Developing dynamic models that flexibly accommodate both single-core and
polycentric agglomeration under empirically plausible conditions remains a promis-
ing direction for future research, particularly in economies undergoing rapid
structural transformation and declining transport costs.
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A Derivations

We recall that the equilibrium conditions can be summarized as follows:

z1i(wt, Lt, Lt−1) = witLit − ∑
k∈N

KiktL
α1(σ−1)
it w1−σ

it

∑l∈N KlktL
α1(σ−1)
lt w1−σ

lt

wktLkt (30)

= witLit − ∑
k∈N

miktwktLkt, (31)

z2i(wt, Lt, Lt−1) = Lit − ∑
k∈N

µ−θ
ikt Wθ

it

∑l∈N µ−θ
lkt Wθ

lt

Lkt−1 (32)

= Lit − ∑
k∈N

SiktLkt−1. (33)

That is,

z(wt, Lt, Lt−1) ≡
[
z1(wt, Lt, Lt−1)

z2(wt, Lt, Lt−1)

]
=

[
(I − Mt)(Yt)

Lt − StLt−1

]
= 0, (34)

where Yit = witLit. The (i, j)th element of Mt and St are

Mijt ≡
KiktL

α1(σ−1)
it w1−σ

it

∑l∈N KlktL
α1(σ−1)
lt w1−σ

lt

, Sijt ≡
µ−θ

ikt Wθ
it

∑l∈N µ−θ
lkt Wθ

lt

(35)

where

Kikt ≡
(

τik

Lα2
i,t−1ĀiL

β2
kt−1ūk

)1−σ

(36)

A stationary equilibrium L∗ should satisfy z(w∗, L∗, L∗) = 0 where w∗ is the associated

nominal wages.

Let dwt, dLt, and dLt−1 denote infinitesimal changes, and let Zik denote the partial

derivative of the function zi(·, ·, ·) with respect to its k-th argument. We then obtain the

following total differential:Z11 dwt + Z12 dLt + Z13 dLt−1 = 0

Z21 dwt + Z22 dLt + Z23 dLt−1 = 0
(37)

=⇒
[

Z11 Z12

Z21 Z22

] [
dwt

dLt

]
=

[
−Z13

−Z23

]
dLt−1 (38)

=⇒
[

dwt

dLt

]
=

[
Z11 Z12

Z21 Z22

]−1 [
−Z13

−Z23

]
dLt−1 (39)
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The inverse of a 2 × 2 block matrix is given by:

[
A B
C D

]−1

=

[
A−1 + QCA−1 −Q
−P−1CA−1 P−1

]
, (40)

where P ≡ D − CA−1B and Q ≡ A−1BP−1, and we assume both A and P are invertible.

Applying this result to the second block row of Eq. (39), we obtain:

dLt =
(
−P−1CA−1Z13 + P−1Z23

)
dLt−1

= P−1
(

Z23 − CA−1Z13

)
dLt−1

=
(

Z22 − Z21Z−1
11 Z12

)−1 (
Z23 − Z21Z−1

11 Z13

)
︸ ︷︷ ︸

∇F

dLt−1

Thus, we conclude that

∇F(L∗) =
(

Z22 − Z21Z−1
11 Z12

)−1 (
Z23 − Z21Z−1

11 Z13

)∣∣∣∣
L=L∗

(41)

Further, we compute as follows:

Z11 =(1 − σ)
(

MŶtM⊤ŵ−1
t − L̂t

)
+ (I − M)L̂t

Z12 =α1(σ − 1)
(

MŶtM⊤L̂−1
t − ŵt

)
+ (I − M)ŵt

Z13 =(1 − σ){α2

(
L̂tŵt − MŶtM⊤

)
+ β2

(
ML̂tŵt − ML̂tŵtL̂t−1

)
}L̂−1

t−1

Z21 =θ
{

SL̂t−1S⊤w−1
t

(
I − M⊤

)
− ŵ−1

t

(
I − M⊤

)
L̂t

}
Z22 =I − θ

{
L̂−1

t

(
α1M⊤ + β1I

)
L̂t − SL̂t−1S⊤L̂−1

t

(
α1M⊤ + β1I

)}
Z23 =θ

(
SL̂t−1S⊤L̂−1

t−1

(
α2M⊤ + β2I

)
− L̂−1

t−1

(
α2M⊤ + β2I

)
L̂t

)
− S

where v̂ ≡ diag[v] denotes the diagonal matrix with diagonal element v, and Yt ≡ wt ◦
Lt with ◦ being the Hadamard product. In the circular four-location space, when local

amenities Āi and local productivity ūi are spatially uniform, the symmetric population

distribution

Lt = Lt−1 = L̄ = [l, l, l, l] (l ≡ L/4)

constitutes a stationary equilibrium.

Let the distance resistance parameters be defined as r ≡ τ1−σ and s ≡ µ−θ . Under
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these definitions, the spatial discount matrices D and E are given by:

D =


1 r r2 r
r 1 r r2

r2 r 1 r
r r2 r 1

 , E =


1 s s2 s
s 1 s s2

s2 s 1 s
s s2 s 1

 . (42)

Let D̄ and Ē denote the row-normalized versions of D and E, respectively. Then,

the Jacobian matrix of the inter-temporal dynamics at the dispersed equilibrium can be

compactly expressed as:
Z11 = l̄

{
(I − D̄)− (1 − σ)(I − D̄2)

}
,

Z12 = −w̄
{
(I − D̄)− α1(1 − σ)(I − D̄2)

}
,

Z13 = w̄α2(1 − σ)(I − D̄2)

, (43)


Z21 = −θ l̄

w̄ (I − D̄)(I − Ē2),

Z22 = I − θ(β1I + α1D̄)(I − Ē2),

Z23 = −θ(β2I + α2D̄)(I − Ē2)− Ē

(44)

Since all of the above matrices are symmetric circulant matrices, they share a com-

mon set of eigenvectors. Consequently, the k-th eigenvalue of each block in the Jacobian

matrix can be expressed using the eigenvalues χk and λk of D̄ and Ē, respectively, as

follows: 
ζ
(1)
1k = l̄

{
(1 − χk)− (1 − σ)(1 − χ2

k)
}

,

ζ
(2)
1k = −w̄

{
(1 − χk)− α1(1 − σ)(1 − χ2

k)
}

,

ζ
(3)
1k = w̄α2(1 − σ)(1 − χ2

k)

(45)


ζ
(1)
2k = −θ l̄

w̄ (1 − χk)(1 − λ2
k),

ζ
(2)
2k = 1 − θ(β1 + α1χk)(1 − λ2

k),

ζ
(3)
2k = −θ(β2 + α2χk)(1 − λ2

k)− λk

(46)

Using these expressions, the k-th eigenvalue fk of the full Jacobian matrix ∇Lt can be
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written as:

fk =
h♯k
h♭k

, where


h♯k =

ζ
(1)
2k ζ

(3)
1k

ζ
(1)
1k

− ζ
(3)
2k ,

h♭k = ζ
(2)
2k −

ζ
(1)
2k ζ

(2)
1k

ζ
(1)
1k

. (47)
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