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Decisions are rarely based on perfect information or flawless evaluation.
This study introduces the sampling logit choice, a unified large-population
framework that combines finite sampling with idiosyncratic decision er-
rors. A central finding is that equilibria in this setting can be represented
aslogit equilibria with endogenously distorted payoffs. Two systematic dis-
tortions arise: a variance premium, which favors actions with higher payoff
variability across samples, and a curvature premium, which reflects convex-
ity or concavity of payoff functions. Together, these forces bias aggregate
play in predictable directions, offering a structural account of equilibrium
distortion under dual noise. Examples demonstrate how this framework

sharpens equilibrium selection and delivers testable comparative statics.
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1 Introduction

Decision making often involves bounded rationality from two distinct channels
of noise. The first is stochastic choice: even when payoffs are perfectly observed,
agents may make mistakes or respond probabilistically reflecting idiosyncratic
factors. The second is informational constraint: agents often have access to only a
small or noisy sample of the environment, which induces systematic distortions
in perceived payoffs.

Extant approaches in game theory tend to address these factors in isola-
tion. On the one hand, payoff-perturbation models such as the quantal response
equilibrium (QRE) (McKelvey and Palfrey, 1995, 1998; Goeree et al., 2005) in-
troduce idiosyncratic randomness in choice as in random utility models (Mc-
Fadden, 1974), but assume agents evaluate all available alternatives with full
information. On the other hand, sampling models assume agents have limited
information in that they observe only a subset of the environment, but usually
posit deterministic best response behavior to those observations (e.g., Osborne
and Rubinstein, 1998, 2003; Salant and Cherry, 2020). This dichotomy leaves
a gap in our understanding of boundedly rational behavior, since in realistic
environments decision makers often face both imprecise choice and imperfect
information at the same time.

This study proposes the sampling logit choice, a unified framework that com-
bines finite sampling with logit-style stochastic choice. Formally, under the
(k, n)-sampling logit choice rule, each agent draws k independent samples of
opponents’ actions from the population, evaluates the resulting sample-based
payoffs, and then selects an action according to the logit choice rule with noise
level 7 > 0. A sampling logit equilibrium (SLE) is then defined as a fixed point of
this process: the population state must coincide with the aggregate distribution
of actions generated by agents who, given their informational limitation k and
decisional imprecision 7, choose according to this rule.

This framework naturally converges to extant frameworks at the extremes.
As the sample size k grows large while 7 is fixed, agents effectively observe the
true population state and SLE reduces to the standard logit QRE. Conversely, as
decision noise # vanishes under a fixed k, SLE approaches sampling equilibrium
(Osborne and Rubinstein, 2003), or equivalently, stationary points of the sampling
best response dynamic (Oyama et al., 2015). By varying (k,77), the model spans a

continuum between fully informed noisy optimization and limited-information



best response.

In fact, the combination of parameters (k, 77) provides a natural interpretation
of different behavioral regimes. A higher # combined with small k appears to
be a natural assumption in a complex or unfamiliar setting, so that players make
more errors or idiosyncratic choice relying only on a few observations or analo-
gies. In contrast, in a well-understood environment or after sufficient learning,
1 would be low and k effectively large, pushing the equilibrium outcome closer
to rational prediction. The sampling logit equilibrium can thus offer a flexible
mapping from environmental conditions to observable play, unifying how we
think about bounded rationality across different contexts.

Our main contribution is to uncover systematic distortions induced by finite
sampling under logit choice. Equilibria can be represented as if players were
optimizing distorted “virtual” payoffs, where two distinct bias forces emerge.
The variance premium favors strategies whose payoffs fluctuate more strongly
across samples, while the curvature premium arises from convexity or concavity in
payoff functions shifting expected payoffs upward or downward. Together, they
bias aggregate play in predictable directions, sharpen equilibrium refinement,
and yield empirically testable comparative statics. Importantly, these distortions
are derived through an application of the delta method (e.g., van der Vaart, 2000,
Ch.3), a classical tool from statistics that has rarely been exploited in game
theory, which enables a tractable approximation of stochastic sampling effects.

Beyond these qualitative insights, the paper establishes several rigorous
properties of SLE for special cases that suggest its role in equilibrium refinement.
If each agent observes just one or two opponents, the SLE is unique and globally
attracting under the sampling logit dynamic naturally associated to our choice
rule. As logit noise diminishes, the unique SLE in these cases converges to
the risk-dominant Nash equilibrium of the game, which corroborates with the
literature and provides another foundation for why certain equilibria might

emerge when players have limited information about others.

Related literature

Our framework connects to four strands of literature: (i) extensions of logit
QRE, (ii) models of finite sampling, (iii) stochastic stability and finite-population
dynamics, and (iv) the “virtual payoff” and rational inattention methods.

We extend the QRE framework by introducing finite sampling. The QRE
framework (McKelvey and Palfrey, 1995, 1998; Goeree et al., 2005) introduces



stochastic choice into equilibrium analysis in games. In our framework, the in-
troduction of sampling noise yields new insights not captured by logit QRE, such
as a systematic bias toward higher-variance strategies. Experimental compar-
isons of different stationary concepts including QRE have shown that models
incorporating sampling often fit observed play better than QRE (Selten and
Chmura, 2008), highlighting the importance of sampling as a source of noisy
behavior. Our model is suited to settings where players have limited experience
or observational data.

Our framework directly builds on the literature studying limited observation
in games, especially the sampling best response dynamic (Oyama et al., 2015). In
their evolutionary model, players occasionally update by taking a sample of k
opponents’ actions and best-responding to the payoffs inferred by the sampled
action distribution. We incorporate logit errors into this setting. This merger
yields a smoother dynamic that facilitates analysis and interpretations through
tractable approximations. Other notable models that incorporate deterministic
best response behavior under some forms of sampling include Osborne and
Rubinstein (1998, 2003), Spiegler (2006a,b), and Salant and Cherry (2020), to
note a few. In evolutionary context, we should mention Sethi (2000), Sandholm
(2001), Mantilla et al. (2020), Arigapudi et al. (2024), and Sawa and Wu (2023),
among others.

Erroneous choices or sampling in a finite population has been one of the
main motivations to consider stochastic evolutionary dynamics, which yields the
stochastic stability method for equilibrium selection in games (Foster and Young,
1990; Young, 1993; Kandori et al., 1993; Ellison, 1993). In this context, logit
response has been one of the main approaches (e.g., Blume, 1993, 1995; Al6s-
Ferrer and Netzer, 2010; Marden and Shamma, 2012). In this literature, the
model by Kreindler and Young (2013) can be seen as a finite-population analogue
of our approach. They consider a logit stochastic evolution model in a finite
population where the agents observe a random finite sample of other agents’
play upon decision. Their focus is the speed of convergence in a two-action
coordination game. Our approach is complementary, as we introduce a static
equilibrium concept in large-population game and explore its properties.

The concept of deterministic virtual payoffs representing stochastic choice in
large-population games is due to Hofbauer and Sandholm (2007). A related
early discussion can be found in Anderson et al. (1992). In this literature, it is

known that one can recast the expected behavior under a stochastic choice model



as a deterministic behavior under an appropriately perturbed model. We adopt
a similar approach and derive a virtual payoff function encapsulating the effect
of dual noises, and in aggregate agents behave as if they were optimizing this
virtual payoff. In two-strategy games, this link allows us to associate a perturbed
potential function whose extrema approximate SLE. It is noted that Matéjka and
McKay (2015) and Fosgerau et al. (2020) established the connection between
discrete choice models and the rational inattention framework (Sims, 2003) in
terms of equivalent optimization problems. In light of this, if we recast our large-
population result to the decision problem of a single agent, our perturbation
function might be interpreted as representing a new type of information cost,
or endogenous control cost in the sense of van Damme and Weibull (2002).

2 Model

2.1 Population games

We focus on large-population game played by a single homogeneous population.
There is a unit mass of anonymous agents each of whom chooses their pure
action, where S = {1,2,...,n} denotes the common, finite set of available
actions. The n-simplex X = {x € R%, : Y,c5x; = 1} represents the set of
population states. For each x € X, x; re_presents the fraction of agents playing
action i. A state at which all agents play action i is called a pure population state
and denoted by ¢;. The function F : X — IR" describes a game’s payoffs, with
Fi(x) being the payoff obtained at state x by nonatomic and anonymous agents
playing action i € S. Where S is understood, F identifies a population game.

The most basic instances of population games are those generated by random
matching in normal form games. Suppose that, given the population state,
agents are randomly matched to play a normal form game with payoff matrix
A = [a;] € R™", where 4;; is the payoff for an agent playing action i € S
matched to another agent playing action j € S. Then, F(x) = Ax, which we
may call a linear population game, and we can identify a linear population game
with its base payoff matrix A.

Below, we introduce four choice rules in population games relevant for our
discussion. Given a choice rule, the associated evolutionary game dynamic is
defined as the expected motion of population state (see Sandholm, 2010, Ch.4

“Revision Protocols and Evolutionary Dynamics”).



2.2 Best response

Given a population game F, the pure and mixed best response correspondences
br: X = S and BR: X = X are respectively defined as

br(x) = argmax F;(x) and (1)
ieS

BR(x) = argmax(y, F(x)) = {y € X : support(y) C br(x)}, (2)
yeX

where we define (u,v) = Y; u;v; for same-sized vectors. A population state
x € X is a Nash equilibrium of F if every agent is playing a pure action that is
optimal given the others’ behavior, for which case x € BR(x). The best response
dynamic (Gilboa and Matsui, 1991; Hotfbauer, 1995) is defined as the following

differential inclusion:!

X € BR(x) — x. (BRD)

The dynamic essentially assumes each agent has perfect information about the
current population state and is able to choose an optimal action, which can be

demanding depending on the context.

2.3 Sampling best response

Oyama et al. (2015) considers an alternative model that impose milder infor-
mational requirements. Assume that when an agent receives a revision op-
portunity, the agent first observes k > 1 independent samples of opponents’
play from the population. The set of possible outcomes of samples of size k
is ZF = {z € Z", : Yicszi = k}. The empirical population state according to a
sample z € ZF is w = %z € X. The agent then evaluates the payoffs based on
w € X, and plays a best response. The probability that z € Z¥ is drawn at x € X
follows the multinomial distribution Mult(k | x). That is, if M*(z | x) € [0,1]
denotes the probability mass of drawing z € ZF at x € X, we have

Mk (z|x) = ( . ) At X 3)

21,22, ,Zn

The empirical population state w = %Z is the maximum likelihood estimator of
the population state under the multinomial sampling model. For each k, the

1See Oyama et al. (2015, Appendix A.1) for a concise summary of differential inclusions.
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k-sampling best response correspondence BRF : X = X is

BR*(x) = E[BR(iz)] = Y M*(z|x)-BR(}z). (4)
zeZk

In the element-wise manner, y € BR*(x) if and only if y = Yok MF(z| x) - a(z)
where a(z) € BR(}z) for each z € Z¥. A (k-) sampling equilibrium (Osborne and
Rubinstein, 2003) is a fixed point of BR¥ satisfying x € BR¥(x).? The k-sampling
best response dynamic is defined as the following differential inclusion:

% € BRF(x) — x. (SBRD)

While demanding less information about the population state, this model as-
sumes agents are rational responders.

2.4 Logit choice

We next recall the logit choice and the logit dynamic. At each x € X, the #-logit
choice rule P : X — X with noise level 7 > 0 is defined as the following mixed
strategy given the current payoff F(x):

e exp (77 'Fi(x))
) Yiesexp (17 1Fi(x))

()

A population state x is a -logit equilibrium if it is consistent with the 7-logit
choice rule, that is, if x = P7(x). Logit equilibrium is by far the most com-
mon formulation of QRE. The large-population y-logit dynamic (Fudenberg and
Levine, 1998, Ch.4) is defined by the following differential equation:’

x = DPl(x) —x. (LD)

It is recalled that the #-logit equilibria for game F coincide with the Nash equi-
libria for the distorted game F where F;(x) = F;(x) — 17 log(x;). In fact, requiring

2Sampling equilibrium in this context is a special case of sampling equilibrium with statistical
inference (Salant and Cherry, 2020) in which agents apply the maximum likelihood estimation
to infer the population state from the finite sample. Sawa and Wu (2023) extensively discusses
Bayesian large-population dynamics corresponding to this equilibrium concept.

3For finite-population settings, logit choice yields Markov chain/process rather than differ-
ential equation, as considered in, e.g., Blume (1993, 1995, 2003); Hofbauer and Sandholm (2007);
Al6s-Ferrer and Netzer (2010); Marden and Shamma (2012), among others. Another foundation
for logit dynamic can be found in stochastic fictitious play (Hofbauer and Sandholm, 2002).
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x* € Xand A* = F(x*) forall i € Simplies A* = y7log ¥jes exp (17~ 'Fi(x})) and
x* = P'(x*). In this sense, [ is a “virtual” payoff for the #-logit equilibrium
problem (Hofbauer and Sandholm, 2007, Appendix).*

2.5 Sampling logit choice

Our framework is a natural synthesis of the sampling best response and the
logit choice. Assume that, after observing a sample z € Z¥, each agent follows
the 7-logit choice rule P” instead of the mixed best response BR. The induced
aggregate choice rule LK : X — X defines the (k, 17)-sampling logit choice rule:

LM (x) = IE[P”(%Z)} = Z MK(z|x) -P”(%z). (6)
zeZk
A (k,n)-sampling logit equilibrium (SLE) is a fixed point of LF satisfying x =
L*1(x). The (k,n)-sampling logit dynamic can be defined as

%= LM (x) — x. (SLD)

The existence of SLE for any fixed 1 < k < oo and # > 0 follows from Brouwer’s
fixed point theorem. All SLE are necessarily positive as L*" is strictly positive.
In particular, it is noted that L¥(¢;) = P'(e;) for any i € S. Also, the dynamic
admits unique global solution for every initial population state in X as L7 is

continuous and globally Lipschitz on X.

3 Examples

Selected examples serve to build intuitions. Equilibrium selection under the
sampling logit choice is briefly discussed.

3.1 Two-action coordination game

A formal result for special cases follow. All proofs are relegated to Appendix A.
Proposition 1. Consider a two-action population game and > 0. For any > 0,

there is a unique SLE that is globally asymptotically stable under (SLD) either (a) if
k=1or(b)ifk =2

4See Behrens and Murata (2021) for an application in spatial economics, where —7 log(x;)
represents congestion externalities incurred by the households residing in location i € S.
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Figure 1: Choice probability of action 1 in the game (7) under different rules.

As a concrete example, consider a linear population game with

s 0
A= [0 t] (s >t>0). (7)

The Nash equilibria satisfy x; € {0, S—_tH, 1}, and x = (1,0) = ey is risk dominant.

Assuming s = 2and t = 1, Figure 1 compares the choice probability of action
1 under different choice rules. We see L* tends toward BR¥ as ;7 decreases, and
toward P as k increases.

For k = 1, the unique SLE for the game is given by

1+e 5/ 1
5,1). 8
14 e (=0/1 4 2e=s/1 €@ 1) ®)

x] =

From s >t > 0, we see x] — 1 as#n — 0, which yields a method of equilibrium
refinement. In fact, the unique (1, #)-SLE can be alternatively identified as the
stationary distribution of a logit-perturbed Markov chain, and selection under
the 7 — 0 limit yields analogous predictions as the stochastic stability approach
under log-linear learning rules (Young, 1993; Blume, 1993, 1995, 2003).

If k = 2, there is a unique SLE x]* such that x]* — 1 as 7 — 0 (see the proof

SWhile the proof techniques are similar to the stochastic stability approach, the selection
in our context can be relatively “fast” in the sense that convergence is described by a deter-
ministic ordinary differential equation, rather than requiring long-run sampling of a stochastic
evolutionary dynamics. This aspect of sampling dynamics is stressed by Oyama et al. (2015).
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Figure 2: Sampling logit equilibria for k € {1,2,3,5,20} in the game (7).

of Proposition 1). These limiting results can be seen as a sampling version of
the convergence result for the principal branch of quantal response functions in
2 x 2 games (Turocy, 2005, Theorem 7), which in particular shows this branch
converges to risk-dominant equilibria in coordination games. This behavior
also resembles almost global asymptotic stability under (SBRD): all its trajectories
starting from x; € X\ {0} = (0, 1] converges to the risk dominant equilibrium if
k =2 (Oyamaetal., 2015, Theorem 1). The origin x; is the exception because it is
another sampling equilibrium, albeit locally unstable. Under (SLD), in contrast,
x1 = 0is not even a fixed point, and the unique SLE is globally attracting.
Figure 2 considers the same setting as Fig. 1 to illustrate how small k leads
to equilibrium selection. The logit equilibrium curves are shown for reference,
for which we note multiplicity of equilibria for small 7 and the convergence to
either of the three Nash equilibria as 7 approaches zero. On the other hand, for
each k € {1,2,3}, the SLE is unique for all # > 0, allowing for selection in the
limit # — 0. Naturally, SLE approximate logit equilibria as we increase k, and

multiple equilibria emerge.

3.2 Young (1993)’s game

To further illustrate the role of sampling noise in equilibrium selection, we

consider the linear population game based on the 3 x 3 game of Young (1993):
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(B) Sampling best response (k = 2)

1 1

(C) Logit (3 = 0.3) (D) Sampling logit (k = 2, 7 = 0.3)

Figure 3: Phase diagrams of the four dynamics in Young’s game (9). Arrows
show sample trajectories, and background contours depict the speed of adjust-
ment: warmer colors indicate faster adjustment, whereas cooler colors indicate
slower adjustment. This figure and the next were generated with the Dynamo
software (Franchetti and Sandholm, 2013).

The game is a coordination game with three strict equilibria {e1,e;,e3} at the
corners of X and two mixed Nash equilibria on the boundary of X. Figure 3
depicts the phase portraits for the four dynamics introduced in Section 2.
Figure 3A illustrates that the best response dynamic (BRD) provides a basic
refinement, where the two boundary equilibria are deemed unstable. However,
it does not yield a unique prediction, as all three corners are locally stable.
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Figure 4: Unique prediction under the logit dynamic with 7 = 0.76 in Young’s
game (9). This example is due to Oyama et al. (2015, p.268)

Figure 3B, on the other hand, demonstrates that (SBRD) with k = 2 essentially
selects x = e3 because it attracts all trajectories starting from X \ {e1, e} (Oyama
et al., 2015, Example 2).

Figure 3C considers the logit dynamic (LD). The dynamic is known to
approximate (BRD) if # is sufficiently small. Reflecting this, multiple stable
equilibria can be seen in Fig. 3C. Figure 3D illustrates that, with sampling noise,
a unique prediction can be obtained. The correspondence between Figs. 3C
and 3D is analogous to that between Figs. 3A and 3B. With two types of noises,
the sampling logit dynamic (SLD) yields a sharper refinement than (SBRD): the
SLE nearby es is globally attracting with no exceptions at the other corners.

On equilibrium selection, logit equilibrium is known to yield a unique pre-
diction when noise level 7 is sufficiently large. If 7 = 0.76 for example, there is
a unique logit equilibrium nearby e3, and this yields an approximate selection
among Nash equilibria (Figure 4). However, because the choice rule is relatively
noisy, the logit equilibrium is close to but noticeably different from e3. With
sampling noise, Figure 3D demonstrates that selection can occur even with a
much smaller 7, and the SLE is closer to e3 than the logit equilibrium in Fig. 4.

Another interesting aspect of the sampling logit dynamic (SLD) is that, in
Fig. 3, its trajectories (Fig. 3D) appear to head more directly toward the bottom-
right vertex of the simplex, compared to those of the sampling best response
dynamic (SBRD) in Fig. 3B or the logit dynamic (LD) in Fig. 3C.
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4 Approximation and virtual payoffs

While the special cases discussed in Section 3 provide intuitive results on equi-
librium selection, the noisy nature of logit choice does not allow for clean and rig-
orous characterizations based on standard game-theoretic concepts.® To study
the expected behavior of a stochastic model, it is often useful to consider ap-
proximation approaches. For instance, Benaim and Weibull (2003) employed
stochastic approximation theory to obtain deterministic evolutionary game dy-
namics as the expected behavior of stochastic evolutionary process in finite
populations. Below, we pursue approximation arguments to explore qualitative
implications of the sampling logit choice. Below, for brevity, we suppress k and
1 from notations whenever they are understood from the context. For example,
L = L*1, P = P, and so on.

4.1 Approximation by the delta method

It is noted that, as a random variable, the empirical population state w = ,%z
admits an asymptotic normal approximation. Provided that k is sufficiently
large and the population state x is not too close to the boundary of X, we can
assume that w approximately follows the multivariate normal distribution with
mean [E[w] = x and covariance matrix Var[w] = iX. Here, ¥ = diag[x] — xx '
is the covariance matrix for Mult(k | x), with T denoting transpose.

The asymptotic normality of w allows us to employ the classical delta method
(e.g., van der Vaart, 2000, Ch.3) to approximate the expectation over samples.

Specifically, the second-order Taylor approximation of P;(w) is

1
Pi (w) = Bi(x) + (P (x),w — x) + 5 (w — x) " P/'(x) (w — x), (10)
where P! and P!’ denotes the gradient and the Hessian matrix of P;, respectively.”

Then, the second-order delta method approximates L;(x) = [E[P;(w)] by

Li(x) = B[P} ()] = PA(x) + o (P (), 5(x)) (1)

®For example, a core result of Oyama et al. (2015) is a sufficient condition under which an
“iterated p-dominant equilibrium” is almost globally asymptotically stable under a generalized
version of (SBRD).

"We assume that F is differentiable as desired. For simplicity, we interpret differentiability
of functions defined on X via extensions of the functions to an open neighborhood of X.
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Here, given square matrices A, B, we define (A, B) = trace[AB] = Y i axby.
Such approximation is impossible for the sampling best response correspon-
dence BR¥(x) = E[BR(w)], simply because BR(-) is generally not differentiable.

To represent L in terms of F, it is useful to introduce some notation. For any
collection {y;}cs of scalars or vectors, let 77(x) be the logit-weighted average, and
let 7;(x) be the relative value with respect to 7(x):

yx) = IZ;S Fi(x)yr and  Fi(x) = yi — (%), (12)

By definition, Yics Pi(x) #i(x) = Lies Pi(x) (yi = y(x)) = 0.
Direct computation by the delta method gives the following result:

Theorem 1. Assume that F is twice differentiable. Then:

(a) Given 7 > 0, for sufficiently large k, the sampling logit choice rule L*I can be
approximated as the n-logit choice rule P with multiplicative corrections:

ii(x) = (1 +fJ\i(X) -|—£/]\1(X)) Pi(x) Vie S, xeX, (13)

where v : X — RYand q : X — R" are defined by

vi(x) = 7= F(x) Z(x) F(x) and qi(x) = %<Fiﬂ(x)/2(x)> (14)

with ¥.(x) = diag[x] — xx .

(b) The approximation error ||L¥1 — L|| vanishes uniformly as ky — oo when F is
linear, and as kn — oo together with k> — oo when F is nonlinear.

4.2 Virtual payoff premiums and their origins

The representation (13) yields an interpretation of SLE based on virtual payoffs
capturing agents’ effective decision biases in aggregate, in the spirit of Hofbauer
and Sandholm (2007, Appendix).

Proposition 2 (Virtual payoff representations). Equilibria under the approximated
choice rule L are equivalently represented as:

(a) the n-logit equilibria for the “virtual” population game F = F + G, where
Gi(x) = nlog (14 7;(x) + 7i(x)) Vie S, xeX (15)

14



is the deterministic payoff distortion that encapsulates the role of sampling noise,
provided that 1 + 0;(x) + g;(x) > O foralli € S,x € X; or

(b) the Nash equilibria for the “virtual” population game F = F + G + H, where G
is the same as above and H;(x) = —nlog(x;).

To see Proposition 2 (a), one can simply confirm

o = e 1)

= = Vie S, xe X. (16)
Yjesexp (177 1F(x))

Thus, the equilibrium condition x = L(x) is nothing but the #-logit equilibrium
condition for the virtual population game F = F + G. Proposition 2 (b) then
follows from a known result for the logit choice discussed in Section 2.4.

Theorem 1 shows that actions with relatively higher values of v and/or g
become exaggerated in aggregate behavior. In the language of Proposition 2,
they are “virtually” preferred by agents beyond the true payoffs would imply.
Then, to obtain insights into SLE, the biases introduced by the deterministic
payoff distortion G, or equivalently, the correction terms 9 and § need to be
elucidated. What are these correction terms?

Naturally, v and g originate from finite-sample variability of inferred payoffs.
The payoffs inferred from a sampled distribution w = %z is expanded as

Fw) ~ F(x) + (F(x),0-x) + Yw-0) E@w@-x. 17

(& J/

NV NV
First-order error: {; Second-order error: {»

Since w is a random variable, both the first-order error {; and the second-order
error {; are also random variables. We have [E[{1] = 0 because E[w] = x. On
the other hand, as we note Var[w] = 1¥,, basic statistical identities imply

vi(x) = 2%72 Var[<%,w - x>} and (18)
01(x) = 5. F [ =) F () (w —)]. 19)

From Egs. (17) to (19), v;(x) corresponds to the variance of the (relative) first-
order error, and g;(x) corresponds to the expected second-order error.

We can thus designate v(x) as the variance premium and q(x) as the curvature
premium reflecting finite-sample noise. The former reflects the tendency to
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overweight strategies with higher variability of inferred payoffs, while the latter
captures systematic distortions due to the local curvature of the payoff function.

5 How variance matters

We first focus on how variance premium 7. To this end, it is useful to consider
linear population games for which F/ = O and hence the curvature premium
is absent. Then, 7;(x) and G;(x) = nlog(1 + 7;(x)) have the same signs.

Since F(x) = Ax, we have F/(x) = a; = [a;1,ap,...,8;,] ', where g; the ith
row of A as a column vector. Then, @;(x) = a; — a(x) represents the relative
marginal payoffs at x under the hypothesis that all other agents apply the #-logit
choice rule, since we see (7;(x), x) = F;(x) — F(x). In linear population games,

variance premium is evaluated as v;(x) = ﬁm(x) where

i) =800 (N0 = T @) x — (Tawx)  eo

is the variance of relative marginal payoffs. Thus, we have the following obser-

vation from Theorem 1 in the context of linear population game.

Observation 1. In linear population games, the approximated choice rule L
assigns higher probability than the plain #-logit choice rule P on actions that
have higher variance 0;(x) of relative marginal payoffs. <

5.1 Intrinsic bias in logit choice and variance premium

The variance premium stems from strict convexity of exp(-) in the logit choice
formula. Asdiscussed, finite-sample payoff evaluation is subject to errors. Then,
an upward error tend to increase the choice probability of action i more than an
equally sized downward error decreases it. Specifically, since p(u) = exp (7~ 'u)

is increasing and convex (p’ > 0, p” > 0), for any symmetric perturbation £,

plp+0) —plp) = /:l+§ p'(t)dt > /V: p'(tdt = p(p) —re=g). @

J/

-

Upside increment Downside decrement

Or, in terms of Jensen’s inequality, for any zero-mean noise ¢,

Elp(p+ )] = p (Blu+]) = p(p)- (22)
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Thus, the expected value is systematically pushed upward under zero-mean
noise. The magnitude of this amplification can be explicitly estimated as®

Elp(u+ O] —pp) _1p"(x) _ 1
]9(‘1/!) ~ 2 P(X) Var[g] - 2772 Var[g]r (23)
again confirming connection to the identity (18).
While the full logit choice probability P;(w) = M is not strictl
& p y Ljcs p(E(®) Y

convex or concave, all exp(-) terms in P;(w) are subject to this “lucky-draw”
effect. Hence, relative magnitudes of these biases determine the net corrections,
as precisely captured by Eq. (18).

We recall the logit choice rule approximates the best response as # — 0 and
agents’ choice behavior becomes more deterministic and sensitive as 77 decreases.
In light of this, Equation (23) intuitively reveals that the variance premium, or
the sensitivity of choice behavior to (first-order) finite-sample errors in payoff

evaluation, becomes more pronounced as 77 decreases.

5.2 Two-action games

As a concrete example, we consider a two-action linear population game

A=1|"
C

Z] with f=(a—c)—(b—d) #0. (24)

Proposition 3. Consider a linear population game (24). Leti,j € S = {1,2} with the
convention being i # j. Then, o;(x) = Pj(x)? - oa(x), where 04 (x) = p*x1x2 > 0
with B = (a —c¢) — (b —d) # 0. In turn, variance premium satisfies

~ 1 1

Ui(x) = S 7;(x) = ij(X) (1—2P;i(x))oa(x) Vx € X. (25)
Observation 2. Variance premium vanishes (0(x) = 0) for x; € {0,1} since
oa(x) = 0 at the boundaries. This is because any sample drawn at these
extreme states happen to allow agents to infer the population state correctly,
and sample-dependent payoff evaluation errors cannot occur. If the population

state is more balanced, inference based on samples fluctuate more, and the

8 From p(u + Q) ~ p(u) + p' ()¢ + 2p" (1)%, for small { for which E[{]?> ~ 0, up to the
second order, E[p(;t + )] ~ p(u) + p'(0)E[Z] + 30" (WE[Z?) & (1+ JE[]] + 5,7 Var(Z]) - p(p).
In linear population games, we can assume that E[] = Obecause E[Aw — Ax] = AE[w — x] = 0.

17



2.5 2.5 2.5

20 e . 20 P 20
I’ X /’
7’ N 7’
15 ,» 15 ; 15
/
i 1.0 -m-0A
— 01 — 01
0.5 (5'2
0.0 0.0 0.0

1.0
05(| /

-0.5 -0.5 -0.5
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

X1 X1 X1

Figure 5: Illustration of Corollary 1 by the plots of 7;(x) = 2kn? 7;(x) for the
case A = [39] with different ;7. The interior Nash equilibrium of the game is

x} = %,and br(x) = {2} if x < x] and br(x) = {1} if x; > x7.

resulting bias 7 tend to become large. This is reflected by 04 (x) attaining its

maximum at x| = % N

A more interesting observation from Proposition 3 is summarized as follows:

Corollary 1 (Virtual preference for the suboptimal). Assume o4 (x) # 0. Then,

AV

P(x) & F(x)ZE(E), VijesSi#j (26

N =

0;(x) E 0 «

with the same sign for the inequalities. In particular, for x; € (0,1), 9(x) = 0 if and

only if x is a Nash equilibrium. Also,

lim :(x) = 4 ° ifi € br(x) Vies. 27)
740 oa(x) ifi ¢ br(x)

Corollary 1 indicates that, in 2 x 2 games, the population behaves as if agents
prefer the suboptimal option. Such a property already exists in the plain -logit
choice rule because it assigns a positive choice probability to the suboptimal
alternative. Equation (26) indicates that sampling errors amplify this bias.

Figure 5 illustrates Corollary 1 for the case A = [2 9] as considered in Figs. 1

1

and 2. For example, we can confirm that ¢;(x) > 0 only if x; < 3 where

br(x) = {2}, and for this range 07 (x) approaches o4 (x) as 7 — 0.

5.3 The loci of sampling logit equilibria

To the extent that our approximation is valid, interior SLE in two-action game
can be analytically characterized. Continue with the general game (24), and
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assume that there is an interior Nash equilibrium satisfying

xlzx*z%e(o,l) with f=(a—c)—(b—d) #0. (28)

If B > 0, then combined with the assumption that x* € (0,1), the game

is a coordination game with two strict Nash equilibria such that x; € {0,1}.
If B < 0, then the game is a stable game (or contractive game) (Hofbauer and
Sandholm, 2009) and x* is the unique Nash equilibrium. The following result

characterizes the shift of the interior equilibrium induced by dual noises.”

Proposition 4 (Analytical approximation for the interior equilibrium). Consider

a linear population game F(x) = Ax where A is given by Eq. (24). Suppose x* > 0

is sufficiently smaller than . If both 6 = 2,(17 and 1 are sufficiently small, the interior

SLE % € (0,1) corresponding to x* is approximated by
f:x*—ﬁlogl_—x—zlog(lqtv*), (29)

x* B
where B = (a—c) — (b—d) # 0and v* = Ooa(x*) = 08%x* (1 — x*). In particular,
¥<x*ifp>0and x> x*if p <O0.

The third term in Eq. (29) captures sampling effects. If v* is sufficiently small,
the first-order approximation yields

—=log(1+40") = = T Ooa(x™) = —%x*(l —x*).  (30)

This term vanishes in the “logit limit” 6 — 0, that is, when k — oo with fixed

n > 0, or more generally when k grows sufficiently faster than 17 decreases. In
1—x*
x*

the basic bias introduced by the logit choice. For B > 0, the sampling effect

this plain logit limit, only the term —% log remains. Thus, this represents
shifts the interior fixed point toward x; = 0, consistent with the intuition in
Section 5.2.

Direct computation based on Eq. (29) shows that ¥ approaches x* as k in-

creases and/or 17 decreases, which is natural:

9 As discussed in the proof, we assume x* is sufficiently smaller than % only to exclude nearly
symmetric cases. A symmetric result holds true for the case x* > 1.
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Corollary 2. The comparative statics for decreasing 1 and increasing k satisfy

- sign%b? —x*| <0 forsmall § = d (31)

W, an

- V.
51gnﬁ|x—x | <0 (32)

where we treat k as a continuous variable assuming large k.

6 How curvature matters

It remains to understand the curvature premium 4. As a parsimonious example,
consider a separable game in which each F; depends only on x;. For simplicity,
we write F;(x) = F;(x;). In this class of games, we compute

gilx) = ﬁ@”(X)IZ(x» - ﬁa”m) La(x) = ﬁaf’(xi) 51— x1), (33)

since [F’(x)];; = 0 unless i = j, implying the following observation.

Observation 3. Other things being equal, at each state, agents behave as if they
prefer actions with (i) higher payoff curvature because of F/(x;) and/or (ii)
relatively high but not too high popularity because of x;(1 — x;). <

This is another form of Jensen-type biases due to convexity or concavity as we
have discussed in Section 5.1. Specifically, actions with larger payoff curvature
F!" are preferred because convex payoff functions exaggerate the apparent ben-
efits due to upside evaluation errors. Under sampling noise, convexity makes
the expected payoff appear higher than the payoff at the mean, while concavity
has the opposite effect. Thus, agents behave as if actions with “more convex”
payoff functions are more attractive, even when expected payoffs are the same.

Also, x;(1 — x;) is largest in the interior of the simplex and vanishes at
the boundary;, reflecting sampling fluctuations (as discussed in Observation 2).
Sampling noise plays an important role in shaping behavior at interior popula-
tion states, where each individual observation carries relatively less information
about the state.

For small 7, the curvature premium g becomes smaller in magnitude com-
pared to the variance premium v. This difference reflects the source of each
correction in Eq. (17). The variance premium arises from the leading effect of
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Figure 6: Illustration of Proposition 5 based on graphs of 2ky?(0 + §) = 7 + 1§
under different values of 7 in a separable two-action congestion game. br(x) =
{1} if x; < 3 and br(x) = {2} if x > 1. PFor comparison, the dashed curves
show only 7.

erroneous payoff evaluation, and the curvature premium is the second-order
correction.

A concrete example is provided below for separable two-action games:

Proposition 5. For a separable two-action game,

v1(x) = 2137P2(x) (1—-2Py(x))o(x) and (34)
() = g Pa(0) (Y (x0) = H (x2) 35)

where o(x) = (F{(x1) + Fé(xz))2 X1X3.

The variance premium biases toward suboptimal action as discussed in Sec-
tion 5.2. The curvature premiums clearly favors the action with a greater curva-
ture at each x. Importantly, the sign of ¥ and 7 can be different, reflecting their
distinct origins.

Figure 6 considers a congestion game F(x) = (—x1,—2(x2)?) in which the

unique Nash equilibrium is x] = 1. The curvature premium biases the ag-
Notably,

o(x) = (5 — 4x1)%x1x; is not symmetric about the midpoint 3, which contrasts

gregate choice toward action 1 as we see F{/ = 0 > —1 = FJ.

to linear population games (Fig. 5). This is because marginal payoffs are state
dependent. While o vanishes at x} as P;(x*) = %, nonzero distortion remains
at xj due to g. Thus, in this congestion game with a non-zero curvature term,
the population at an interior Nash equilibrium behave as if it prefer less risky

option (i.e., action 1) for which expected cost is lower under sampling noise.
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7 Perturbed potential

The connection between large-population potential games (Sandholm, 2001,2009) is
of interest. Equilibrium problems in this class of games are represented as max-
imization problems of scalar-valued functions over x € X. The question is that
whether there is an appropriately defined scalar-valued function representing
sampling effects. The answer is yes, albeit in an approximate sense.

We focus on general two-action population games. Unfortunately, general-
izations beyond this class of games appears to be difficult. In the two-action
case, a potential function f : X — R is a function that satisfies

ag}(cf) . agij) = F(x) - B2 (x) Vx € X. (36)

In fact, with y(t) = (¢,1 — t), the following function satisfies Eq. (36):

f0 = [ (ROE) - Boo)d, )

The Nash equilibria of the game F are known to coincide with the stationary
points of the maximization problem max,cx f(x), denoted by SP(f), satisfying
the first-order necessary conditions for optimality (including not only local
maxima but also saddle points and local minima).

Likewise, it is known that 1-logit equilibria of F correspond to the stationary
points of the maximization problem of the following perturbed potential function
(Hofbauer and Sandholm, 2002, 2007):

f1(x) = f(x) +h(x) where h(x)=—5) x;logx;. (38)

i€S

Here, h : X — R is the entropy function with convention 0log0 = 0.
Combining these facts and Proposition 2, it is straightforward to see that SLE

in a game can be represented by an optimization problem:

Proposition 6. Consider a two-action population game F. Define the perturbed poten-
tial function f*1 : X — R by

X ~
1) = [ (Rw(®) = By(1)) di +h(x) )
withy(t) = (t,1 —t) € X and the virtual payoff function F defined in Proposition 2.
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Then, the set of fixed points of the approximated choice rule L in Eq. (13) is SP(f*1).

It should be reiterated that the connection between SLE and SP(f*") is of an
approximate sense. That is, SP(f*") is close to SLE only if the approximation
LM =~ L is sufficiently good. Nonetheless, under this hypothesis, Proposi-
tion 6 yields a simple dynamic characterization of SLE by a direct application of
Theorem 3.2 in Hofbauer and Sandholm (2007):

Proposition 7. Consider a two-action population game F. For y > 0and k > 1, let
the approximated (k,1)-sampling logit dynamic be defined by * = L(x) — x. Then,
every solution trajectory of the dynamic converges to connected subsets of SP(f*). If
SP(f*") is a singleton, then it is globally asymptotically stable.

We can rearrange f* such that f*(x) = f(x) + g(x) + h(x) where

8 = [ (Gulw(t) - Galy(e))at. (40)

Since f*(x) = f(x) + g(x), it is observed that g is the new perturbation that
encapsulates the aggregate impacts of sampling under logit choice.

The shape of g is of interest because it represents how the extrema of the
potential function f are shifted in f*/. For example, the entropy function # is
maximized at ¥ = (3,1
and in the extreme case 7 — oo, f is maximized at X .

), so that extrema of f7 must be shifted toward this %,

For illustration, we again consider the general 2 x 2 linear population game
(24). With B = (a —¢) — (b — d), the potential in terms of x; can be written as
flx) = g(xl — x7)? where x} = % and we23 assume x; =€ (0,1). Depending
on the sign of B, the potential function f is globally minimized or maximized at

the interior Nash equilibrium. We have the following characterization:

Proposition 8. Consider the general linear two-action game (24) and assume that there
is an interior Nash equilibrium x* such that x5,x; € (0,1). If B > 0, g as a function
on X is a strictly quasiconcave and maximized at x*. If f = 0, g¢(x) = 0 forall x € X.

If B <0, g on X is q strictly quasiconvex and minimized at x*.

Figure 7 illustrates the perturbed potential f*/ as well as the perturbations
g and h, from which we confirm quasiconvexity or quasiconcavity of g for
respective cases, as well as nonconvexity. The slope of g vanishes also at the
boundaries because Proposition 3 implies G1(x) = Gy(x) = 0if x1x, = 0.
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(A) Coordination game (8 > 0) (B) Anti-coordination game (8 < 0)

Figure 7: Potential f, perturbed potentials f7 and f*", and perturbations ¢ and
h for linear population game with A = [29] (left panel) and —A (right panel).
We set (k,77) = (40,0.2). The unique mixed Nash equilibrium is x; = 1. The
corresponding interior stationary points of f, f7, and f* are indicated by black
markers. For ease of comparison, g and & are vertically shifted so that each
equals zero at its extremum.

The sampling-induced perturbation g inherits the structure of the underlying
payoff environment. This contrasts to the entropy /1, which is always maximized
at the uniform state (3, 1) independently of the game. This reflects the funda-
mentally different sources of perturbation. The entropy h captures idiosyncratic,
independent noise that does not depend on the game, whereas the sampling-
induced perturbation g reflects systematic, state-dependent distortions arising

from the finite-sample evaluation of payoffs.

8 Discussions

This study contributes a unifying equilibrium concept that connects and extends
both the QRE/logit models of noisy choice and the sampling-based models of
limited information. Combined with the virtual payoff representation, this
leads to insights into the interaction of dual noises. We identify which equilib-
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rium outcomes are biased and in what direction due to finite sampling, among
which we highlight the variance premium, bias for actions with higher variability
of perceived payoffs. The mechanism here is not a primitive risk preference, but
rather a structural bias induced by the convexity properties of the logit choice
mapping under sampling noise. The effect parallels convexity biases well dis-
cussed in statistics and can be viewed as a form of virtual risk loving emerging
from noisy observation.

One of the key feature of Oyama et al. (2015), the immediate basis for this
study, is the heterogeneity of sample sizes whereby possible number of obser-
vations k > 1 is also a random variable. This possibility is abstracted away in
this study because our emphasis is on the connection between the number of
observations k and the accuracy of decision represented by 7, as well as the
resulting aggregate biases under positive 7. Since the heterogeneity is the key
for their equilibrium selection results, understanding the role of randomness of
k in our context is an interesting extension. The examples in Section 3 suggest
similar conclusions on equilibrium selection may be drawn. It is also important
to explore how other predictions based on the sampling best response dynamic
(e.g., Sawa and Wu, 2023; Arigapudi et al., 2024; Arigapudi and Heller, 2025)
are robust against logit noise.

On the empirical side, the comparative statics of the sampling logit equilib-
rium might be explored through laboratory experiments. The two parameters
play distinct roles: the sample size k reflects how much information agents can
observe, while the noise level 7 reflects how precisely they act on it. In principle,
k could be varied by adjusting the amount of feedback or observations, and 7
by altering time pressure or cognitive load. We would then expect larger k to
weaken the bias toward high-variance strategies, while smaller 7 mainly sharp-
ens responsiveness to payoff differences. Such experiments could provide an
empirical benchmark for distinguishing informational from decisional sources
of bounded rationality.

Finally, several apparent limitations of the present study should be noted.
First, our results concerning systematic biases rely on an approximation that
assumes a sufficiently large sample size k. Figure 8 illustrates how the accuracy
of the approximation deteriorates when k is small, especially for relatively small
1. The precise dynamics for small k remains an open question beyond the
specific cases examined. Second, both the sample size k and the noise level # are
treated as exogenous. A natural extension as a model of learning would be to
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Figure 8: Approximation errors for the choice probability of action 1 (L];"7 —Ly)
under different 7 and k. The coordination game (7) with (s,t) = (2,1) as
considered in Figs. 1 and 2 is assumed. Black markers show the Nash equilibria.

endogenize these parameters by incorporating costs of information acquisition
or cognitive effort. Finally, while our framework provides sharp predictions in
two-action games, its analytical tractability in general n-action games warrants
further investigation. Stable games (Hofbauer and Sandholm, 2009) would be a

natural starting point for such analysis.
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A Proofs

Proof of Proposition 1. (a) The case k = 1. We show uniqueness and global
asymptotic stability for general n > 2. Note that L/(x) = ¥, {ei}ies ML(z) -
P'(z) = YjesIljx; where IT; = Pin(ej) € (0,1) is the n-logit choice proba-
bility of action i € S at ¢;. The equilibrium condition x = L(x) then reads
xi = YjesIljxj or x = Ilx. Because I € RI}" can be seen as a transition
probability matrix of an irreducible Markov chain, there exists a unique “sta-
tionary distribution” x* € X satisfying x* = Ilx*. Since I is a positive matrix,
x* is proportional to the positive eigenvector of IT associated with the (Perron—
Frobenius) eigenvalue 1. Furthermore, (SLD) reduces to a linear dynamical
system x = ITx —x = (IT — I)x. It follows via standard arguments that X is
forward invariant and x* is globally asymptotically stable in X.

(b) The case k = 1 and n = 2. For brevity, let y = x1. Letz € {0,1,2} denote
how many times action-1 player is drawn in a sample of size k = 2. Then, Pr(z =
2) =x2=y%Pr(z=1) =2x122 = 2y(1 —y),and Pr(z = 0) = 23 = (1 —y)2.
Let g, € (0,1) be the choice probability of action 1 for each realization of z. That
is, g0 = P/ (e2), g1 = P/ (3(e1 + €2)), and g = P/(ey). Define

F) =L (y,1—y) —y (41)
=@ Xy 2 xy(l—y)+q0x (1—y)* -y (42)
= (02 = 201 + 90)v* + (2(q1 — 90) — 1) y + go. (43)

Then, an SLE is a solution to f(y) = 0 satisfying y € (0,1). Observe that
f(0) = g0 > 0and f(1) = g2 —1 < 0. Because f is a quadratic function,
there is a unique y* € (0,1) that solves f(y*) = 0. Furthermore, y* is globally
asymptotically stable because y = f(y) > 0 for x € [0,y*) and y = f(y) < O for
x € (y*,1]. In fact, under k = 2, the sampling logit choice rule is a quadratic
function for general n > 2.

If F(x) = Axwith A= [30] (s >t >0),q0 = p(—t), 1 = p(3(s — t)), and
g2 = p(s) with p(A) = (1+ exp(—;y_lA))_l. Since g2 — 291 +q0 <0,

. —b— /b2 —4dac

= e () 49

solves f(y*) = 0, witha = g2 — 291 + g0, b = 2(q1 —qo) — 1, and ¢ = gp. As
7140, (q0,91,92) = (0,1,1) and (a,b,c) — (—1,1,0), and hence y* — 1. |
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Proof of Theorem 1. Let § = ;7! > 0. The gradient of P; is given by

P/(x) = 0P;(x) (F/(x) — F'(x) " P(x)) = 0P;(x)F/(x). (45)

o~

Let R; = F/(x) for brevity, so that P/ = 6P;R;. The Hessian matrix of P; is
P/(x) = 6R;P," +0P,R, = 0°P,R,R; + OP;R.. (46)
The Jacobian matrix of R; is computed as
Ri=(F — (CRH)) = - L (HP)T +PE) +F' (47)
l !
=—0Y PFR/ +F' -y PBF (48)
] ]
— 0y P(F—F)R] —0Y. PR/ +F/  (49)
) l

— —0Y PRR] +F, (50)
1

where we note that } PlﬁRlT = O. Together with Eq. (46), we see

Pl.ll(x) = 92P1~ (RZRlT — ZPZRZRZT> + QPZEZ/\/ — 92Pi . RZRZT + QPZI/::\/ (51)
)

Finally, from the identity (bb', A) = Y.ijbibjAij = b" Ab for any b € R",

1, 1 e 1 —
ﬁ(Pz’ (x),2(x)) = Wpi R XR; + %Pi' (F', Z). (52)
Collecting terms, we obtain Theorem 1 (a).

The accuracy of the approximation should be discussed in relation to (k, 7).

The required scaling of k and 7 is characterized as follows.

Proposition A. For any € > 0, |L*1(x) — L(x)|| — 0 uniformly on the set X, =
{x € X : minjcg x; > €} as kn — oo and kn? — oo, that is, if k > max{y !, n2}.
If F is linear, then k > 17! suffices.

Proof. Let the expected residual of the proposed approximation be

R(x) = E[P(@)] ~ L(x) = [¥(x)  (P(x) + 52 (P"(),Z(x)}),  (53)
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where (P”(x),%(x)) is interpreted in the element-wise manner, i.e., its ith ele-
ment is (P/’(x),X(x)). The leading term of R has an order proportional to the
third-order derivative of the logit choice map P and third-order moment of
the random variable w.

Since P’ diverges at the boundary of X, we must focus on X¢. Derivatives
of the logit choice map scale as ||P'|| = O(y~ 1), |[P”|| = O(y72), and ||P"|| =
O(n73) as 17 | 0 under standard norms.

Also, w is the sum of i.i.d. random variables: w = %(Yl + Y+ +Y)
where Y; € {e;}ics and Pr(Y; = ¢;) = x;. Let k(Z) € R"*"*" denote the third-
order cumulant of a R"-valued random variable Z. From standard properties
of cumulants, k(aZ) = a®c(Z), and x(¥; Z;) = ¥;«x(Z;) for independent {Z;}.
Thus, x(w) = k%;c(ﬂczl Y;) = k% Yk xk(y) = le k-x(Y) = klZK(Yl). Since
k(Y1) is constant with respect to k and 7, ||x(w)|| = O(k~2) under any fixed
operator norm on tensors. To sum up, there exist appropriately chosen constants
C* and C** such that

* /11 C**

IR < - [PT)] - le(W)] < e (54)
uniformly for all x € X.. The constants C* and C** depend on ¢, F, and the
chosen norm for P”" and «, but independent of k and 7. That is, |[R(x)| =
O(k=2173). It is noted that the correction term § = 9+ 7 in Theorem 1 is
O(k~'5=2) forn < 1and O(k~y~1) for > 1. From Equation (54), this implies

bound from 9) su HI_{(XEH < = —0 as kg — o0 and (55)
p 1.,,—2 n
xeXe k Ui k77
(bound from 4§) sup IR < ¢ —0 as ky* — co. (56)

rex, K7t~ T kap?

Thus, k > 7! and k > 2. If F is linear, § is absent and § = O(k~'5~2), for
which case k > 17! suffices. For nonlinear cases, the former condition is active
if # > 1 and the latter is active for 7 < 1. O

Theorem 1 (b) is a slightly informal version of Proposition A. u

Proof of Proposition 2. Let Z(x) = }ics exp(17~'Fj(x)). Let 6 = 0+ 4. Then,

ex “1F(x
Y (14(x)) exp <17_1F]~(x)> =Z(x) Y (1+4j(x)) p (g(xl):]( ) (57)

jE€S jES
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= Z() L+ 5(0))B(x) =Z(x)  (59)
jes

since Yjeg 0j(x)Pj(x) = 0. Define Fi(x) = F;(x) 4 17log(1 4 6;(x)). Then,

exp (y 'Fi(x)) _ (1+4i(x))exp (1~ 'Fi(x)) (59)
Yiesexp (171F(x))  Lies(1+d(x)) exp (77 1F(x))
_ (1+6i(x)) exp (17 'Fi(x))
_ o (60)
= (14 6i(x))Pi(x) = Li(x). (61)

Thus, the condition x = L(x) is nothing but the 7-logit equilibrium condition for
the virtual payoff F, showing part (a). A direct application of known results for
the logit choice yields (b) (e.g., Hofbauer and Sandholm, 2007, Appendix). W

Proof of Proposition 3. Let A; = (a,b)" and A, = (c,d)". Define Ag = A; —

Ay = (a—c,b—d)T",and denote p; = P(x) and pr = Py(x). Let R; = m,
R1 = A1 — (p1A1 + p2A2) = p2(A1 — A2) = p2Ao, (62)
Ry = Ay — (p1A1 + p2A2) = —p1(A1 — Az) = —p1Ao. (63)

Let o4(x) = Ag Ao = ((a—¢) — (b—d))? - x1x2 > 0, with equality iffa — ¢ =
b —d or x1xp = 0. Then, we confirm

01 = R} ZRy = p5Ag LAy = p50a, (64)
0y = Ry LRy = p3AJ LAy = pioa, (65)
P101 4 P22 = p1p30a + papica = (p1+ p2)pipaoa = pipaoa.  (66)

Thus, 31(x) = ]92(]92 — ]91)0',4 and Ez(x) = pl(pl — pz)O’A. [ |

Proof of Proposition 4. For simplicity, we use x1 as the state variable. Note that
Fi(x1) — F2(x1) = B(x1 — x*). To marginally economize on notation, let 6; = v;.

For now, assume that § > 0. Then, br(x;) = {1} if x; > x* and br(x;) = {2}
if x; < x*. Corollary 1 implies

O(x1)) ifxg > x*
(81(x1),02(x1)) = 1 (0,0) if x; = x* (67)
(6(x1),0) ifx; < x¥,



where we set 6(x1) = 6oq = 08%x1(1 — x1). Lety € (0,1) denote the interior
fixed point of L(x1). Then,

v _Lily) _ o (Bu=x)) 1+a()
Ty~ Ly P( ” )1+52<y)' (68)

Taking log of both sides,
—log(1+4d(y)) ify > x*

(y—x")+poly), ply)=97 0 ify =x* (69
log(1+d(y)) ify <x*.

Yy

logl_y:

=™

Sete = y — x* and assume € = O(#). From the first-order expansion of Eq. (69),

x* € B
logl_x* +x*(1—x*) = Ee—i—p(y). (70)
It is noted that the special case y = x* € (0,1) occurs if and only if x* = 1
because Eq. (68) implies 1~ = 1. Then, Equation (70) yields € = 0.
For y # x*, for suff1c1ently small 7, up to the first order of 7,
o (10g ¥ E— E_; - 71)
“ 8T TPV (1 —x7)
-1
_n
72
(o) 1 x>> &
Z(log1 - —poy ) (14+0O(y (=) t=14c+0(c?) (73)
_n
7
= (o5 000, 74
To examine the dependence on y, define
er =1 log x +log(1+6%) (75)
B 1—x*

where 6* = 6(x*) = 0p%x*(1 — x*) > 0. Note that log(1 + 6*) > 0, so that
€4+ > €_ because we assume 3 > 0. It is also remarked that we did not expand
0(y) around x* explicitly in Eq. (70) because it amounts to considering a second-

order term of # and thus irrelevant for the first-order approximation. From
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Eq. (69) and B > 0, we have e if y > x*, and e_ if y < x*. Because € = y — x*,
we need to check the consistency conditions €, > 0 and e < 0. We see

*

e+ >0 < loglfx*+log(1+5*)>0 & x*>x+52+5* (76)
* 1 *
e-<0 & loglfx*—log(1+(5*)<0 & x*<x521§* (77)

If x_ < x* < x4, both possibilities remain valid. However, for small 6%,
this requires x* to be sufficiently close to %, which is not satisfied for generic
games. Assuming that 0 (and thus ) is sufficiently small, only € is valid if x*
is sufficiently smaller than % and hence than x .

If  <0,br(x;) = {2} if x; > x* and br(x;) = {1} if x; < x*. Repeating the
same line of logic, again, only e_ is valid if x* is sufficiently smaller than % Thus,
€_ is the only possibility irrespective of the sign of f. Symmetric arguments
show that only € is valid if instead x* is sufficiently larger than 1. u

Proof of Proposition 5. For the variance term, Equation (25) is applicable as we
replace o4 (x) with op(,) (x) = (F{(x1) + F}(x2))? x1x2. For the curvature term,

F (x1)x1(1 = x1) — p1F (x1)x1(1 = x1) — paFy (x2)x2(1 — x2)
= (1= p1)F (x1)x1(1 — x1) — p2F/ (x2) x2(1 — x2)
= (1—p1)(F'(x1) — B/ (x2))x1(1 — x1),

aspy =1—pjand x1(1 —x1) = x2(1 — x2). [

Proof of Proposition 6. The slope of f* along the tangent space of X satisfy

o) af(x) '

df o 5%y = F(x) — F(x) —nlogx; —n+nlogxa+1. (78)

Thus, the corner solutions x; = 0 or x; = 0 cannot be a stationary point of
the maximization problem max,cx f*7(x), because df — oo as x; | 0 and
—df — o0 as x; | 0. Thus, every stationary point must be positive and satisfies
— ; _ X1 T = .
df = 0. Solving for~d f =0, wehavenlog 3l = F(x) — F(x), wh1ch~ reduces to
the condition x; = L;(x), showing that x is must be a fixed point of L. |
Proof of Proposition 7. From Proposition 2, the approximated dynamic can be
seen as the 77-logit dynamic in the modified population game F. Since f* is the
perturbed potential function associated to this setting, it is a strictly increasing
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Lyapunov function for the dynamic. From this, Theorem 3.2 of Hofbauer and
Sandholm (2007) applies. L

Proof of Proposition 8. We note that g is continuous and differentiable.
If B > 0O, the game is a coordination game. Corollary 1 implies that, for
0<x <1,

2ex) () >0 if x; < x* (br(x)
gxx _ gxx = Gy(x) = Go(x){ =0 ifx; =x* (br(x)
1 2 <0 ifx; > x* (br(x)

{2})
(1,2}) (79
{1})-

Thus, g is a unimodal function whose maximum is attained at x; = x*.

Similarly, if B < 0, —¢ becomes unimodal. That is, g is locally maximized at
the boundaries x; = 0 and x; = 1, and globally minimized at x; = x*.

Also, Observation 2 implies that 7(x) = 0if x; € {0,1}, and hence G;(x) —
Go(x) = 0 at x; = 0 and Gy(x) — Gi(x) at x; = 1. That is, the directional
derivatives of g vanishes at the boundaries of X.

Summing up, g is not concave nor convex, except for the degenerate case

g = 0 where B = 0; g is strictly quasiconcave (quasiconvex) if > 0(8 < 0). W
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