

Equilibrium Distortion with Dual Noise: The Sampling Logit Approach

LEG Seminar on December 1, 2025 (Mon)

Minoru Osawa
Institute of Economic Research, Kyoto University

Background and Motivation

- Models of bounded rationality are widely used in both theoretical and quantitative economic analysis.
 - Random Utility Models (RUM) are core tools in transport demand analysis as well as spatial economics.
- In boundedly rational choice, there are essentially two sources of noise:
 - 1. Idiosyncratic errors: \approx Standard RUM
 - 2. Limited observation: Systematic distortion from imperfect information

How are equilibria in large games are distorted under both sources of noise?

• Environment: Large-population games (Sandholm, 2010)

More Backgrounds

1. Idiosyncratic noise / RUM

- pprox A quantitative tool to address "irrationality" in choice data
- McFadden in 1980s: RUM Foundation
- o Logit eqm. in routing games, aka Stochastic User Eqm. (Sheffi, 1984)
- "Quantitative" spatial models (Redding & Rossi-Hansberg, 2017)
- O Quantal response eqm. (McKelvey & Palfrey, 1995; Goeree et al., 2005)

2. Sampling (finite observation) noise \approx A model of micro behavior

• Related works: Choice and equilibrium under imperfect state observation (Osborne & Rubinstein 2003; Salant & Cherry 2020), and corresponding dynamics (Oyama et al. 2015; Sawa & Wu 2023). Equilibrium selection (Kreindler and Young, 2013).

Objective

This study introduces:

- a choice rule (Sampling Logit Choice) that combines two noise sources,
- the corresponding stationary concept (Sampling Logit Equilibrium), and
- the corresponding evolutionary dynamic.

Results:

- 1. Suggest natural connections to equilibrium selection (Oyama et al. 2015).
- 2. Show that "virtual" preference for variance emerges endogenously because of noise in sampling.
- 3. Give **comparative statics** on how SLE depends on noise parameters.

Environment

- Large-population game (single population)
 - \circ Homogeneous and anonymous continuum agents, and each chooses a pure action $i \in S \equiv \{1, 2, \dots, n\}$
 - \circ Population state is a distribution $x \in X = \{x \geq 0 \mid \sum_i x_i = 1\}.$
 - \circ Payoff function $x\mapsto F(x)=(F_i(x))_{i=1}^n$
 - Assumption: All convenient properties
- ullet Given S, the payoff function F fully identifies the game.
- Fits well in the context of cities and transport.

Examples

- ullet Random matching in symmetric normal-form games $A=[a_{ij}]$
 - Expected payoff

$$F_i(x) = \sum_j a_{ij} x_j$$
 or $F(x) = Ax$

- A identifies the game
- Congestion games
 - o "Network equilibrium" in transport engineering (Beckmann et al., 1956)
 - \circ For example, S is the set of alternative routes over network
 - \circ The payoff of route $i \in S$:

$$F_i(x) = -\mathrm{TravelCost}_i(x)$$

Nash Equilibrium and Sampling Equilibrium

- Nash Equilibrium (NE): $x \in \mathrm{BR}(x)$
 - \circ BR is the mixed-strategy best response:

$$\mathrm{BR}(x) = ig\{y \in X: y_i > 0 \Rightarrow i \in rg\max_k F_k(x)ig\}.$$

- ullet k-Sampling Equilibrium (SE): $x\in \mathrm{BR}^k(x)$
 - 1. Each agent observes k others: Counts distribution $z \sim \operatorname{Multinomial}(k, x)$.
 - 2. Forms the ML estimate, i.e., empirical distribution $w = \frac{1}{k}z$.
 - 3. Best responds to inferred payoffs F(w):

$$\mathrm{BR}^k(x) = \mathbb{E}[\mathrm{BR}(w)] = \sum_z \Pr(z) \, \mathrm{BR}(w).$$

Logit Equilibrium and Sampling Logit Equilibrium

• η -Logit Equilibrium (LE): $x=P^{\eta}(x)$

$$P_i^{\eta}(x) = rac{\exp(\eta^{-1}F_i(x))}{\sum_l \exp(\eta^{-1}F_l(x))}.$$

- ullet (k,η) -Sampling Logit Equilibrium (SLE): $x=L^{k,\eta}(x)$
 - 1. Each agent observes k others: Counts distribution $z \sim \operatorname{Multinomial}(k, x)$.
 - 2. Forms the ML estimate, i.e., empirical distribution $w = \frac{1}{k}z$.
 - 3. Logit responds to inferred payoffs F(w):

$$L^{k,\eta}(x)=\mathbb{E}[P^{\eta}(w)]=\sum_z \Pr(z)P^{\eta}(w)$$

Corresponding Myopic Dynamics

• Best Response (BR) Dynamic (Gilboa and Matsui, 1991; Hofbauer, 1995)

$$\dot{x} \in \mathrm{BR}(x) - x$$

• k-Sampling BR Dynamic (Oyama, Sandholm, and Tercieux, 2015)

$$\dot{x} \in \mathrm{BR}^k(x) - x$$

• Logit Dynamic (Fudenberg and Levine, 1998, Ch.4)

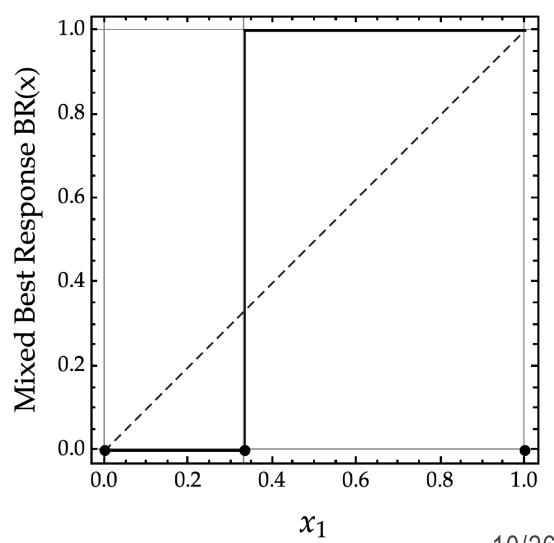
$$\dot{x} = P^{\eta}(x) - x$$

Sampling Logit Dynamic (This study)

$$\dot{x} = L^{k,\eta}(x) - x$$

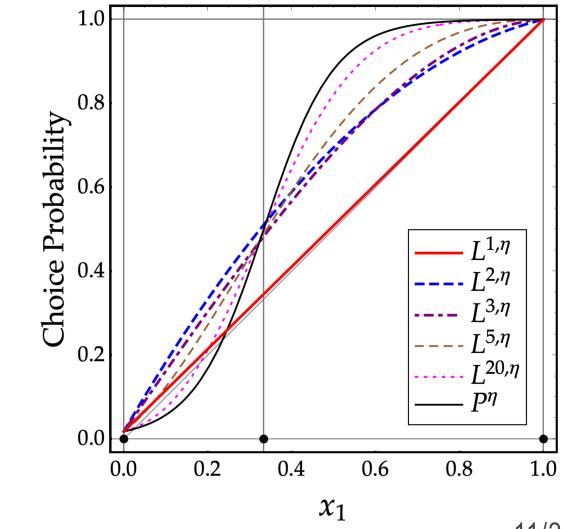
Example 1: A Simple 2×2 Coordination Game

- ullet Suppose F(x)=Ax with $A=egin{bmatrix} 2 & 0 \ 0 & 1 \end{bmatrix}$
 - \circ Or $F_1(x)=2x_1$ and $F_2(x)=x_2$.
- ullet Nash Eqms: $x_1 \in \{0,1/3,1\}.$
- Under the Best Response Dynamic,
 - $\circ x_1 = 1/3$ is locally unstable
 - $x_1 \in \{0,1\}$ are locally stable
- $x_1 = 1$ is risk dominant
 - Selected under various rules



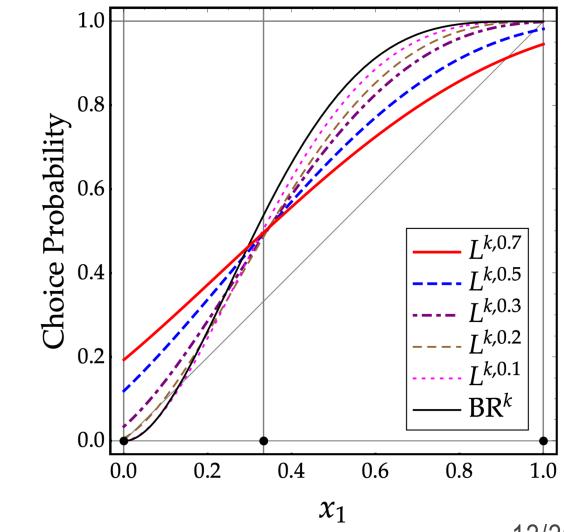
Example 1: Choice Probability for Action 1

- ullet s-logit vs. logit at $\eta=0.25$
- $ullet \ L_1^{k, extsf{0.25}}(x) o P_1^{ extsf{0.25}}(x) ext{ as } k o \infty$



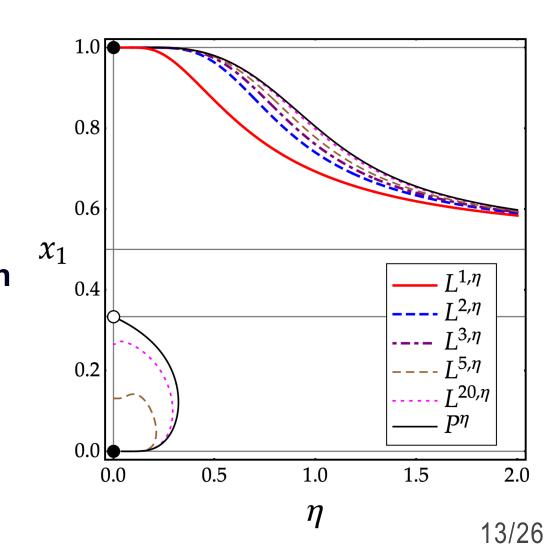
Example 1: Choice Probability for Action 1

- ullet s-logit vs. s-BR at k=5
- $ullet \ L_1^{{f 5},\eta}(x) o \mathrm{BR}_1^{{f 5}}(x) ext{ as } \eta o 0$



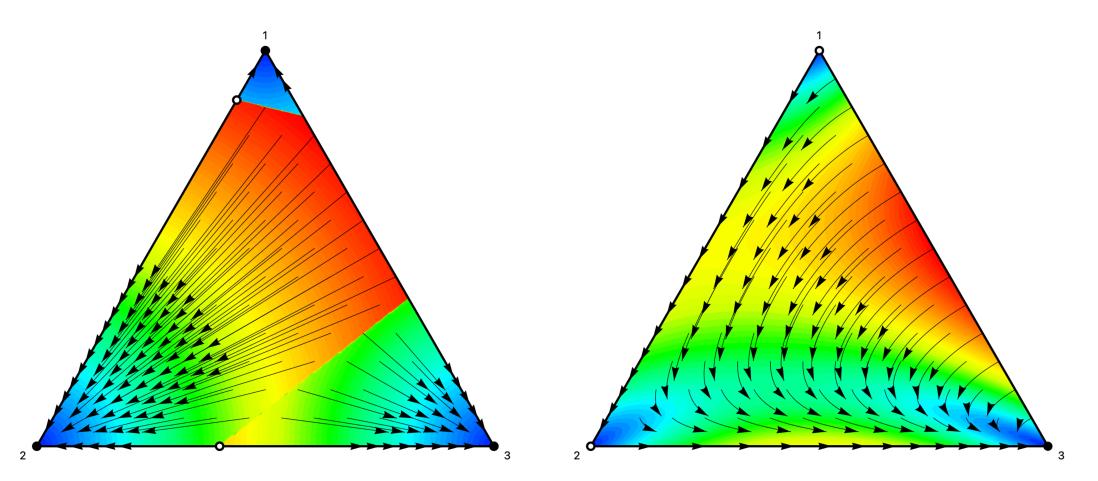
Example 1: Equilibria and Selection

- ullet Fact: LE o NE as $\eta o 0$ / SE o NE as $k o \infty$
- Natural properties of SLE
 - $\circ
 ightarrow \mathsf{LE}$ as $k
 ightarrow \infty$
 - $\circ o \mathsf{SE} \ \mathsf{as} \ \eta o 0$
 - $\circ \to \mathsf{approx} \; \mathsf{NE} \; \mathsf{as} \; \eta \to 0 \; (\mathsf{if} \; k \; \mathsf{is} \; \mathsf{large})$
- Limiting SLE yields equilibrium selection as η goes down from relatively high level, provided that k is relatively small.
 - o cf. Kreindler and Young (2013, Sec. 6)



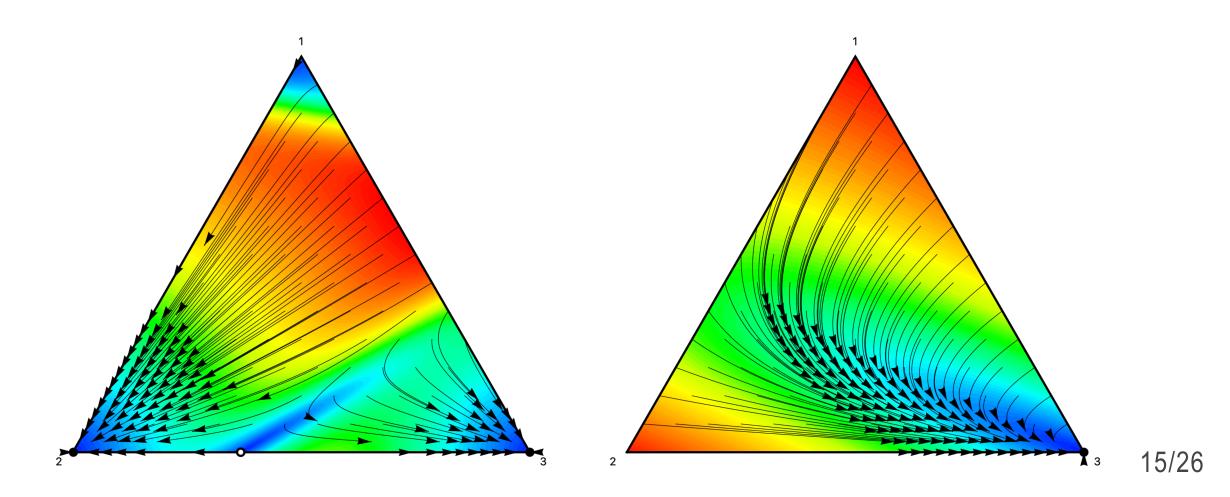
Example 2: Young (1993)'s 3×3 Game

- The BR dynamic and the sampling BR dynamic
- ullet "Almost global" stability of $x=e_3=(0,0,1)$ for small k (Oyama et al., 2015)



Example: Young (1993)'s 3×3 Game (2/2)

- The logit dynamic and the sampling logit dynamic
- ullet Global stability of $x=e_3$ for small k. Maybe faster? (No formal analysis yet)



Summary so far

- Sampling logit chioce: A natural extension of sampling best response rule.
- The associated equilibrium concepts follow naturally.
 - \circ Nash Eqm. \rightarrow_k Sampling Eqm.

```
\downarrow_{\eta} \downarrow_{\eta} Logit Eqm. \rightarrow_{k} Sampling Logit Eqm.
```

- Natural analogues to known results on equilibrium selection:
 - Selection of the risk-dominant (RD) eqm. in logit QRE (Turocy, 1995)
 - \circ Selection of (1/k)-dominant eqm. under sampling BR (Oyama et al. 2015)
 - Fast convergence (Kreindler and Young, 2013, Sec. 6)
- But how and why the two kinds of noise distort equilibrium?

How to Understand $L^{k,\eta}$?

• Need to understand the choice rule $L^{k,\eta}$:

$$L^{k,\eta}(x)=\mathbb{E}[P^{\eta}(w)],\quad w=rac{1}{k}z.$$

- ullet For large k, we can approximate $w \sim \mathrm{Normal}(x, rac{1}{k}\Sigma(x)).$
 - $eta \in \mathbb{E}[w] = x$ and $\mathrm{Var}[w] = rac{1}{k}\Sigma$, where $\Sigma(x) = \mathrm{Var}[z] = \mathrm{diag}[x] xx^{ op}$
- Then, by the delta method (e.g., van der Vaart, 2000, Ch.3), we can approximate:

$$L^{k,\eta}(x)pprox \widetilde{L}(x)=\mathbb{E}\left[ext{Taylor approximation of }P^{\eta}(w) ext{ about }x
ight].$$

- $\widetilde{L}(x)$ is a function of x, $\Sigma(x)$, and info of F at x. And of course (k,η)
 - = A relatively simple function of x and (k, η) !
 - Could be easier to understand.

Simplification and Notations

- ullet For simplicity, we focus on the linear case F(x)=Ax.
 - \circ \widetilde{L} is relatively simple for this case. The nonlinear case is in the paper.
- ullet Some notations. For any collection $\{y_i\}_{i=1}^n$, set
 - \circ Logit weighted mean at x:

$$\overline{y}(x) = \sum_{i=1}^n P_i^{\eta}(x) y_i$$

 \circ Relative values at x:

$$\widehat{y_i}(x) = y_i - \overline{y}(x)$$

Approximation Formula via the Delta Method

Theorem 1: For k sufficiently large,

$$L^{k,\eta}(x)pprox \widetilde{L}_i(x)=\Big(1+rac{1}{2\eta^2}\,\widehat{\pmb{\sigma_i}}(\pmb{x})\Big)P_i^{\eta}(x).$$

- The η -logit choice rule P^{η} with a multiplicative correction term.
- $\sigma_i(x)>0$ is the variance of relative marginal payoffs at x:

$$\sigma_i(x) = rac{1}{k} \cdot \widehat{A_i}(x)^ op \Sigma(x) \widehat{A_i}(x)$$

- \circ For F(x) = Ax, we have $abla F_i(x) = A_i = (a_{il})_{l=1}^n$.
- ullet Reduces to P^η when $k o\infty$. Also, $k\eta o\infty$ required for accuracy.

Variance Premium

• Variance premium: Actions with higher relative marginal payoff variances are chosen more often than the plain η -logit choice rule P^{η} .

$$L^{k,\eta}(x)pprox \widetilde{L}_i(x)=\Big(1+rac{1}{2\eta^2}\,\widehat{\pmb{\sigma_i}}(\pmb{x})\Big)P_i^{\eta}(x).$$

- On average, agents exhibit bias toward "risky" options.
 - Not an individual-level behavior, but a population-level effect.
 - Aggregate "preference" for variance arises endogenously.

Virtual Payoff Representation

- The induced bias can be written as a "virtual" payoff primitive.
 - cf. Hofbauer and Sandholm (2007, Appendix): "Virtual payoffs" = An equivalent log penalty representation of logit equilibria.
- Set $\widetilde{L}_i(x) = \Big(1 + rac{1}{2\eta^2}\,\widehat{\sigma_i}(x)\Big)P_i^\eta(x) = G_i(x)P_i^\eta(x)$.
- ullet Further, set $\widetilde{F}_i(x) \equiv F_i(x) + \eta \log G_i(x)$. Then,

$$\widetilde{L}(x) = rac{\exp(\eta^{-1} \widetilde{F}_i(x))}{\sum_l \exp(\eta^{-1} \widetilde{F}_l(x))}.$$

ullet Fixed point $x=\widetilde{L}(x)\Leftrightarrow \eta$ -logit equilibrium of the virtual game \widetilde{F} !

Why Does Variance Premium Emerge?

- ullet Consider $p(\mu) \equiv \exp(\eta^{-1}\mu)$, where μ is some payoff.
- ullet Consider estimation error: $\mu + \epsilon$, where $\epsilon = \pm \zeta$ with equal prob.
- Positive errors increase p more than negative errors decrease it:

$$p(\mu+\zeta)-p(\mu)\geq p(\mu)-p(\mu-\zeta).$$

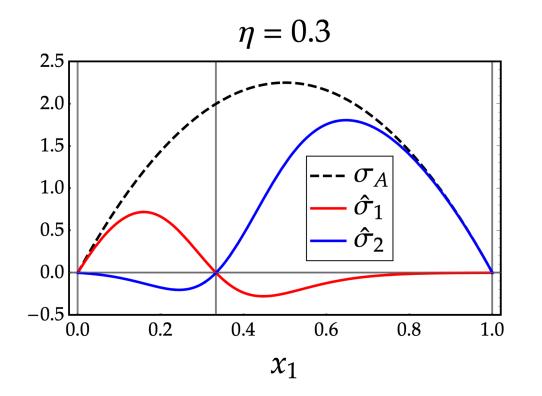
ullet Expected value $\mathbb{E}[p(\mu+\epsilon)]$ is **upward-biased** (basically Jensen's ineq.):

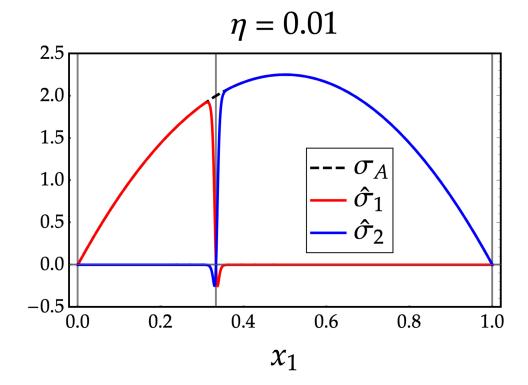
$$\mathbb{E}[p(\mu + \epsilon)] \geq p(\mu)$$

- ullet Also, we can show this bias is $\propto \mathrm{Var}[\epsilon]$.
- ullet Futher, $\mathrm{Var}[\epsilon] = \mathrm{Var}[F_i(w) F_i(x)] pprox \mathrm{Var}[
 abla F_i(x)(w-x)]
 ightharpoonup \sigma_i(x)$
- ullet P^{μ} are relative values of $p(\eta^{-1}F_i(x))
 ightarrow {
 m relative}$ values ($\hat{\ }$) matter.

Example 1 (Cont'd): 2×2 Coordination Game

ullet $\widetilde{L}_1(x)=(1+c\,\widehat{oldsymbol{\sigma_1}}(x))P_1(x)$ and $\widetilde{L}_2(x)=(1+c\,\widehat{oldsymbol{\sigma_2}}(x))P_2(x)$





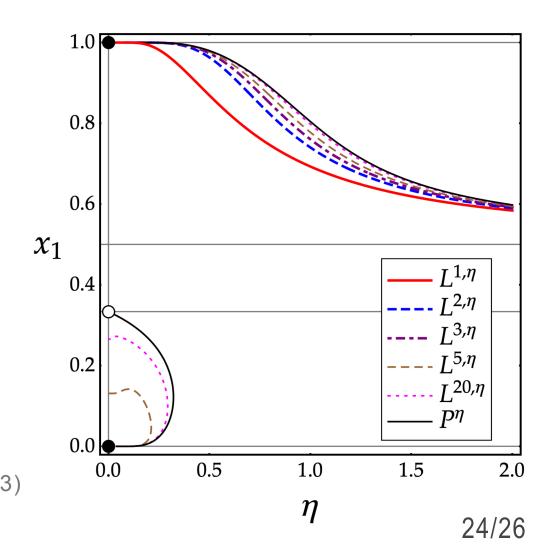
- ullet Ex.: $\mathrm{BR}(x)=\{2\}$ for $x_1<1/3$. However, $\widehat{\sigma_1}(x)>0$ (shifts P_1^η upwords).
- Payoff estimation errors introduce bias toward the suboptimal choice.

Example 1 (Cont'd): 2×2 Coordination Game

- Payoff estimation errors introduce bias toward the suboptimal choice.
- Comparative statics of the interior SLE \widetilde{x} : Let the interior NE be x_{int}^* :

$$rac{\partial}{\partial \eta} |\widetilde{x} - x^*_{
m int}| > 0 \quad ext{for large } k \ -rac{\partial}{\partial k} |\widetilde{x} - x^*_{
m int}| < 0$$

- The region of attraction for the "upside" SLE enlarges in noisy environments (k small or η high)
 - \circ cf. "Fast convergence" under medium η with partial observation (Kreindler-Young, 2013)



Summary

- Proposed and analyzed a new choice rule, the **sampling logit choie**, that combines two canonical noise sources.
- Thanks to the differentiability of logit, we obtained an intuitive interpretaion of choice/equilibrium distortion ("variance premium" / "virtual payoff").
- Still at an early stage. Many todos/extensions:
 - General characterization of equilibrium distortion/selection for some important class of games (e.g., stable games, potential games).
 - \circ Application to concrete games with ≥ 3 actions (e.g., bilingual games)
 - \circ Allowing random number of observations k: $L^{\eta}(x) \equiv \sum_{k=1}^{\infty} \lambda_k L^{k,\eta}(x)$
 - \circ Endogenizing (k,η) via information/attention cost (rational inattention)
 - (Experimental validation)

Thank You for Your Attention! 🎉