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目的

都市経済学モデルを変分不等式・相補性問題，および集団ゲーム理論の
観点から議論する．
• 都市モデルは付け値地代 (bid rent) 関数を考えるのが標準的だが，付
け値地代アプローチは双対型の相補性問題と対応付けられる．

• 土地消費は人口集積に対する分散力として働き，また離散選択モデル
とも対応付けられる．逆に言えば，離散選択モデルは分散力として捉
えることができる．

• 集積の経済を追加したモデルもシンプルなケースでは積分可能な問題
（ポテンシャル・ゲーム）になる．
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都市経済学の基本モデル：
Alonso–Muth–Mills モデル



Alonso–Muth–Mills モデル see: Fujita (1989)

通勤費用と地代とのトレードオフで都市内の居住パターンを表現
混雑のみのモデル ⇒ 問題の構造として凸性を持つ
状況設定：
• 1単位の連続的な労働者が存在する離散空間を考える
• 居住地 i = 1, 2, . . . , n，土地供給量 Ai，通勤費用 ci

• i = 0に CBD (central business disttrict) が存在し，全員そこへ通勤
• 簡単のため，効用は z を合成財消費量・aを土地消費量として準線形

u(z, a) = z + f(a) f ′ > 0, f ′′ < 0, lima→0 f(a) = −∞
予算制約 z + ra ≤ y − ci（y は十分大きい）

Quiz 消費者の効用最大化問題を解き間接効用関数を求めよ．
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間接効用

z = y − ci − raになることを使って解いてしまおう．

u(a) ≡ y − ci − ra + f(a) ⇒ u′(a) = −r + f ′(a)

f ′′ < 0なので最適性の必要十分条件は u′ = 0．特に，r > 0．
居住地 iの土地市場の均衡条件は，居住人数を xi，土地消費を ai としてxiai = Ai (ri > 0)

xiai ≤ Ai (ri = 0)
⇒ ai = Ai/xi (∵ ri > 0)

また，最適性条件より ri = f ′(Ai/xi)

4/21



間接効用

従って，消費者の居住地人口 xi を変数とする間接効用は

vi(xi) = y − ci + g(Ai/xi) g(a) ≡ f (a) − af ′ (a)

明らかに v は分離可能．従って，次の最適化問題が立地均衡と等価：

minimize −
∑n

i=1

∫ xi

0
vi(ω)dω

subject to
∑n

i=1xi = L, xi ≥ 0

Quiz この均衡問題の解が存在すれば一意であることを確認せよ．
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解 目的関数の Hesse行列は − diag[v′
i(xi)]である．ところで

v′
i(xi) = −Ai

x2
i

g′(Ai/xi)

g′(·) = f ′(·) − af ′′(·) > 0

であるから v′
i(xi) < 0であり，目的関数は凸関数．

（=同じ地点に居住する人が多ければ多いほど間接効用が減少する）
等価最適化問題は凸計画問題 ⇒ 従って解は存在すれば一意である．

Quiz 混雑ゲームと全く同じ構造であることを確認し，双対問題を示せ．
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例 f(a) = α log a．f ′(a) = α/aより g(a) = α log a − α．よって

vi(xi) = y − α − ci − α log xi

Ai
.

よって等価最適化問題の目的関数は（定数を除くと）

−
∑

i(y − α − ci + α log Ai) − α
∑

ixi log xi

解は xi = 0が不適より全 iについて vi(xi) = v̄ だから

xi = Ai exp(α−1(y − ci − α − v̄))

⇒ xi = Ai exp(−α−1ci)∑
k Ak exp(−α−1ck)

L
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拡張：交通混雑

居住地が線上に順々に並んでいると考え，居住地 iから i − 1への交通費
用を ti とする．このとき ci = ti + ti−1 + · · · + t1 になる．
交通ネットワークのモデルと同様，ti が交通量に依存する増加関数だと
しよう．すなわち

ti = ti(x) = ti(xi + xi+1 + · · · + xn)

Quiz このモデルに対する等価最適化問題が存在するか確認し，存在す
るならば与えよ．また，解の特徴を述べよ．
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余談 渋滞と混雑

混雑ゲームでは，リンクの利用量に応じて増加関数として交通混雑を考
えるが，道路のボトルネック（e.g., 橋，高需要の交差点）は明示的に考
えていない ⇒ ラッシュアワーの渋滞は原理的に考えられない．
ボトルネック・モデルは動的な渋滞を考えるモデル (Vickrey, 1969)

居住地選択を固定し，通勤者がいつ自宅を出発するかを考える．
• 居住地と CBDの間には単位時間キャパシティ µのボトルネック
それ以上の交通フローが流入すると待ち行列が発生

• 通勤者には希望到着時刻 t∗ が存在（始業時刻など）
そこからずれるほどペナルティが発生

⇒待ち行列遅れと到着時刻のずれとのトレードオフで出発時刻を選択
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都心の形成：Beckmann モデル



概要

AMMモデルの立地パターンの非対称性 = CBDに全員が通勤する仮定
Beckmann モデル：CBDを明示的に仮定せず，その形成を表現
企業の利得関数：

vi(x) =
∑

jϕijxj − ci(xi)．
• ϕij ∈ (0, 1)を j から iへの正の外部性の強さ
• ci(·)は地点 iの混雑外部性．c′

i(·) > 0．
オリジナル論文では ci(xi) = α log xi を仮定

• “microfoundation”を与えることも可能
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等価最適化問題

AMMモデルと異なり，Beckmann モデルの v は分離可能ではない．
しかし，外部性が対称ならば等価最適化問題が存在．D = [ϕij ]として

∇v(x) = D − diag[c′(xi)]

⇒ D が対称（ϕij = ϕji）ならば∇v(x)は対称．
具体的には，対応する最適化問題は

maximize 1
2 x⊤Dx −

∑
i

∫ xi

0
c(ω)dω

subject to
∑

ixi = L, xi ≥ 0
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例 c(x) = α log xならば最適化問題は

maximize 1
2 x⊤Dx − α

∑
ixi log xi

subject to
∑

ixi = L, xi ≥ 0

であり，その解は Ei(x) ≡
∑

j ϕijxj として次の不動点問題の解：

xi = Pi(x)L Pi(x) = exp(α−1Ei(x))∑
k exp(α−1Ek(x))

Quiz 2 地点モデルを考える．L = 1, ϕii = 1, ϕij = ϕji = ϕ とすると
き，異なる αのレベルに対応する不動点の挙動を考察してみよ（横軸に
x1 をとり，関数 x1 および P1(x)のグラフを描いて考えればよい）
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Quiz 解が 3つ存在する条件を求めよ．
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対称 2地点ケースの解曲線

P ′
1(x1) = 1 より ϕ∗ = 0.6 と求められる：
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均衡の一意性

利得関数の Jacobi行列 ポテンシャルの Hesse行列 × − 1）：

∇v = D − diag[c′(xi)]

が実行可能領域上で常に負定値であれば解は一意．
Quiz c(x) = αxならば，対応する最適化問題は A = D − αI として

maximize 1
2 x⊤Dx − α

2
∑

ix
2
i = 1

2 x⊤Ax

Aが条件付き負定値ならばこの問題は凸計画問題であり，解は一意．
Quiz 内点解なら x = v̄A−11（v̄：定数）となることを確認せよ．
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線分 5地点の集積形成 (ϕij = ϕℓij , c(xi) = αxi)

[ℓij ] = Toeplitz(0, 1, 2, 3, 4) =

[
0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

]

1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

α = 0.5, ϕ = 0.9,

x = {0.11, 0.24, 0.3, 0.24, 0.11},

v(x) = {0.76, 0.76, 0.76, 0.76, 0.76}

1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

α = 0.5, ϕ = 0.8,

x = {0., 0.28, 0.44, 0.28, 0.},

v(x) = {0.65, 0.67, 0.67, 0.67, 0.65}

内点解 端点解（不安定）
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居住地区と業務地区の形成：
Ogawa–Fujita モデル



モデル

企業と労働者の相互作用による都市構造形成
企業分布m = (mi)，労働者の居住・通勤パターン n = (nij)

⇒ 人口分布 N = (Ni), Ni =
∑

jnij

土地市場・労働市場の均衡 → 地代 ri・賃金 wi

企業の利得関数：　 πi = Fi(m)︸ ︷︷ ︸
売上：集積の経済を仮定

−wi L︸︷︷︸
労働需要

−ri sf︸︷︷︸
土地需要

仮定：∇F (·)は全てのmに対して正定値 · · · 集積の経済
例：Fi(m) = F̄im

α
i (α > 0)

Fi(m) = F̄i

∑
j ϕijmj（[ϕij ]：正定値）
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モデル

労働者の効用：vij = wj − tdij︸︷︷︸
通勤費用

−ri sw︸︷︷︸
土地需要

前提：dij：ij 間の物理的距離，t, L, sf , sw は定数，土地供給 ai

均衡状態：企業の利潤最大化行動（立地選択）・労働者の効用最大化行動
（居住地・勤務先選択）・市場均衡（賃金・地代）と整合的な (M, n, w, r)

• 企業間の集積の経済が存在
⇒ 業務地区が内生的に形成される（cf. Beckmannモデル）

• 企業・労働者が土地市場で競合，最も高い地代を支払う主体が利用
⇒ 業務地区・居住地区の別が均衡で決まる
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均衡条件を表す NCP

0 ≤ nij ⊥ v̄ − (wj − tdij − ris
w) ≥ 0

0 ≤ mj ⊥ πj = Fj(m) − wjL − rjsf ≤ 0

0 ≤ ri ⊥ ai − sw∑
jnij + sfmi ≥ 0

0 ≤ wj ⊥
∑

inij − Lmj ≥ 0

0 ≤ v̄ ⊥ N −
∑

ijnij ≥ 0

Ogawa–Fujita は Fi(m) = F̄ − τ
∑

j dijmj と特定化⇒ LCPに帰着
Quiz dij = dji とする．市場均衡条件の実行可能性役を満足する (m, n)
に実行可能領域を制限することで，LCPを最適化問題に帰着せよ．
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均衡の特徴づけ

dij = dji のとき，Ogawa-Fujita モデルは以下の最適化問題に帰着：

max
(m,n)≥0

− τ

2
m⊤Dm − t

∑
ijdijnij

s.t. ai ≥ sw∑
jnij + sfmi ∀i (ri)∑

inij ≥ Lmj ∀j (wj)∑
ijnij = N (v̄)

Quiz 均衡の一意性が成立する条件を確認せよ．
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Quiz 2地点のケースで均衡解を求め，直感的意味を説明せよ．
なお，a1 = a2 = 1，L = 1，τ = 1，N = 1，d12 = d21 = 1，sw = sf = 1
とする．また，対称性よりm1 ≥ m2 として考えてよい．
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